Open Access
Issue
JNWPU
Volume 36, Number 1, February 2018
Page(s) 83 - 90
DOI https://doi.org/10.1051/jnwpu/20183610083
Published online 18 May 2018
  1. Raymer D P. Aircraft Design:A Conceptual Approach[M]. Washington D C, American Institute of Aeronautics and Astronautics, 1989 [Google Scholar]
  2. Meredith P. Viscous Phenomena Affecting High-Lift Systems and Suggestions for Future CFD Development[C]//High-Lift System Aerodynamics, AGARD CP 515, 1993: 203-219 [Article] [Google Scholar]
  3. Dam C P V. The Aerodynamic Design of Multi-Element High-Lift Systems for Transport Airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2):101-144 10.1016/S0376-0421(02)00002-7 [NASA ADS] [CrossRef] [Google Scholar]
  4. Qin Xuguo, Liu Peiqing, Qu Qiulin, et al. Influence of Gap Parameters on Aerodynamics of Multi-Element Airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2):193-196 (in Chinese)[Article] [Google Scholar]
  5. Huang Jianguo. Selection and Analysis of Motion Type of Trailing Edge Flap[J]. Civil Aircraft Design and Research, 2009(3) :8-12 (in Chinese)[Article] [Google Scholar]
  6. Bolonkin A, Gilyard G B. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft[M]. National Aeronautics and Space Administration, Dryden Flight Research Center, 1999 [Google Scholar]
  7. Chen Yingchun, Li Yalin, Ye Junke, et al. Study Progress about High-Lift System of C919 Airplane[J]. Advances in Aerospace Sciences and Engineering, 2010, 1(1):1-5 (in Chinese)[Article] [Google Scholar]
  8. [CDATA[Guy Norris. Boeing Unveils Plans for Trailing Edge Variable Camber on 787 to Reduce Drag, Save Weight[EB/OL]. (2000-06-01)[2017-04-12] http://www.flightglobal.com/articles/2006/06/12/207172/boeing-unveils-plans-for-trailing-edge-variable-camber-on-787-toreduce-drag-save. ]] [Google Scholar]
  9. Strüber H. The Aerodynamic Design of the A350 XWB-900 High Lift System[C]//29th International Congress of the Aeronautical Science, 2014: 913-921 [Article] [Google Scholar]
  10. Murayama M, Nakakita K, Yamamoto K, et al. Experimental Study on Slat Noise from 30P30N Three-Element High-Lift Airfoil at JAXA Hard-Wall Low-Speed Wind Tunnel[C]//20th AIAA/CEAS Aeroacoustics Conference, 2014: 2080-2113 [Article] [Google Scholar]
  11. Cook P H, Firmin M C P, McDonald M A. Aerofoil RAE 2822:Pressure Distributions, and Boundary Layer and Wake Measurements[M]. RAE, 1977 [Google Scholar]
  12. Rendall T C S, Allen C B. Efficient Mesh Motion Using Radial Basis Functions with Data Reduction Algorithms[J]. Journal of Computational Physics, 2009, 228(17) : 6231-6249 10.1016/j.jcp.2009.05.013 [NASA ADS] [CrossRef] [Google Scholar]
  13. Lophaven S N, Nielsen H B, Sondergaard J. DACE-A MATLAB Kriging Toolbox[R]. Technical Repert IMM-TR-2002-12 [Google Scholar]
  14. Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2) : 182-197 10.1109/4235.996017 [CrossRef] [Google Scholar]
  15. Wilson B, Cappelleri D, Simpson T W, et al. Efficient Pareto Frontier Exporation Using Surrogate Approximation[J]. Optimization and Engineering, 2001, 2(1) : 31-50 10.1023/A:1011818803494 [CrossRef] [Google Scholar]
  16. Giunta A, Wojtkiewicz S, Eldred M. Overview of Modern Design of Experiments Methods for Computational Simulations[C]//41st Aerospace Science Meeting and Exlubit, 2003: 649-666 [Article] [Google Scholar]
  17. Li Fengwei. Aerodynamics and Gas Dynamics Introduction[M]. Xi'an, Northwestern Polytechnical University Press, 2007: 277-278 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.