Open Access
Issue
JNWPU
Volume 36, Number 1, February 2018
Page(s) 74 - 82
DOI https://doi.org/10.1051/jnwpu/20183610074
Published online 18 May 2018
  1. Chou P C, Croman R. Degradation and Sudden-Death Models of Fatigue of Graphite/Epoxy Composites[C]//Composite Materials: Testing and Design, ASTM STP, Neworleans, 1979: 431-454 [Article] [Google Scholar]
  2. Halpin J C, Jerina T A, Johnson T A. Characterization of Composites for the Purpose of Reliability Evaluation[C]//Analysis of Test Methods for High Modulus Fibers and Composites, San Antonio, 1973: 5-64 [Article] [Google Scholar]
  3. Yang J N, Jones D L, Yang S H, et al. A Stiffness Degradation Model for Graphite/Epoxy Laminates[J]. Journal of Composite materials, 1990,24:753-769 10.1177/002199839002400705 [NASA ADS] [CrossRef] [Google Scholar]
  4. Mu Penggang. Research on Fatigue Life Prediction of Composite Typical Structures[D]. Xi'an, Northwestern Polytechnical University, 2012(in Chinese) [Google Scholar]
  5. Lian Wei, Yao Weixing. Residual Stiffness-Residual Strength Coupled Model of Composite Laminates[J]. Acta Materiae Compositae Sinica, 2008, 25(5):151-156 (in Chinese)[Article] [Google Scholar]
  6. Matzenmiller A, Lubliner J, Taylor R L. A Constitutive Model for Anisotropic Damage in Fiber-Composites[J]. Mechanics of Mterial, 1995, 20(2):125-152 10.1016/0167-6636(94)00053-0 [CrossRef] [Google Scholar]
  7. Maimi P, Camanho P P, Mayugo J A, et al. A Continuum Damage Model for Composite Laminates:PartⅠ-Constitutive Model[J]. Mechanics of Materials, 2007, 39(10):896-908[Article] [Google Scholar]
  8. Donadon M V, Iannucci L, Falzon B G, et al. A Progressive Failure Model for Composite Laminates Subjected to Low Velocity Impact Damage[J]. Computers & Structures, 2008, 86: 1232-1252[Article] [CrossRef] [Google Scholar]
  9. Ladeveze P, Ledantec E. Damage Modeling of the Elementary Ply for Laminated Composites[J]. Composites Science and Technology, 1992, 43: 257-267 10.1016/0266-3538(92)90097-M [CrossRef] [Google Scholar]
  10. O'Higgins R M. An Experimental and Numerical Study of Damage Initiation and Growth in High Strength Glass and Carbon Fibre-Reinforced Composite Materials[D]. Limerick, University of Limerick, 2007 [Google Scholar]
  11. Payan J, Hochard C. Damage Modelling of Laminated Carbon/Epoxy Composites under Static and Fatigue Loadings[J]. International Journal of Fatigue, 2002, 24: 299-306 10.1016/S0142-1123(01)00085-8 [CrossRef] [Google Scholar]
  12. Lemaitre J, Desmorat R. Engineering Damage Mechanics[M]. Berlin, Springer, 2005 [Google Scholar]
  13. Guan Di, Sun Qin, Yang Fengping. A Modified Low Cycle Fatigue Damage Model for Metals[J]. Chinese Journal of Solid Mechanics, 2013, 34(6):571-578 (in Chinese)[Article] [Google Scholar]
  14. Yang Fengping, Sun Qin, Luo Jinheng, et al. A Corrected Damage Law for High Cycle Fatigue[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):140-147 (in Chinese)[Article] [Google Scholar]
  15. Hahn H T, Tsai S W. Nonlinear Elastic Behavior of Unidirectional Composite Laminae[J]. Journal of Composite Materials, 1973(7):102-118[Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. McCarthy C T, O'Higgins R M, Frizzell R M. A Cubic Spline Implementation of Non-Linear Shear Behaviour in Three-Dimensional Progressive Damage Models for Composite Laminates[J]. Composite Structures, 2010, 92: 173-181 10.1016/j.compstruct.2009.07.025 [CrossRef] [Google Scholar]
  17. Zhou Y H, Yazdani-Nezhada H, McCarthy M A, et al. A Study of Intra-Laminar Damage in Double-Lap, Multi-Bolt, Composite Joints with Variable Clearance Using Continuum Damage Mechanics[J]. Composite Structures, 2014, 116 : 441-452 10.1016/j.compstruct.2014.05.051 [CrossRef] [Google Scholar]
  18. Zhou Y H, Hamed Y N, Chi H, et al. A Three Dimensional Implicit Finite Element Damage Model and its Application to Single-Lao Multi-Bolt Composite Joints with Variable Clearance[J]. Composite Structures, 2015, 131 : 1060-1072 10.1016/j.compstruct.2015.06.073 [CrossRef] [Google Scholar]
  19. Puck A, Schurmann H. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models. Composites Science and Technology, 1998, 58 : 1045-1067 10.1016/S0266-3538(96)00140-6 [CrossRef] [Google Scholar]
  20. Pinho S T. Modelling Failure of Laminated Composites Using Physically-Based Failure Models[D]. London, Imperial College London, 2005 [Article] [Google Scholar]
  21. Egan B, McCarthy M A, Frizzell R M, et al. Modelling Bearing Failure in Countersunk Composite Joints under Quasi-Static Loading Using 3D Explicit Finite Element Analysis[J]. Composite Structures, 2014, 108 : 963-977 10.1016/j.compstruct.2013.10.033 [CrossRef] [Google Scholar]
  22. Benjamin Richard, Frederic Ragueneau, Christian Cremona, et al. Isotropic Continuum Damage Mechanics for Concrete under Cyclic Loading:Stiftness Reccveny, Inelastic Strans and Frictional Sliding[J]. Engineering Fracture Mechanics, 2010, 8(77) : 1203-1223[Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.