Open Access
Issue |
JNWPU
Volume 36, Number 5, October 2018
|
|
---|---|---|
Page(s) | 955 - 962 | |
DOI | https://doi.org/10.1051/jnwpu/20183650955 | |
Published online | 17 December 2018 |
- Goldberg A, Tarjan E. Efficient Maximum Flow Algorithms[J]. Communications of the ACM, 2014, 57(8): 82-89 [Article] [CrossRef] [Google Scholar]
- Liang C, Yu F R, Zhang X. Information-Centric Network Function Virtualization over 5g Mobile Wireless Networks[J]. IEEE Network, 2015, 29(3): 68-74 [Article] [CrossRef] [Google Scholar]
- Kosut O. Max-Flow Min-Cut for Power System Security Index Computation[C]//IEEE Sensor Array and Multichannel Signal Processing Workshop, 2015: 61-64 [Google Scholar]
- Chen Xiaoxu, Wu Heng, Wu Yuewen. Large-Scale Resource Scheduling Based on Minimum Cost Maximum Flow[J]. Journal of Software, 2017, 28(3): 598-610 (in Chinese) [Article] [Google Scholar]
- Ford L R, Fulkerson D R. Notes on Linear Programming, Part Ⅱ: Maximal Flow through a Network[M]. Santa Monica, RAND Corporation, 1977: 16-31 [Google Scholar]
- Karzanov A V. Determining the Maximal Flow in a Network by the Method of Preflows[J]. Doklady Mathematics, 1974, 15(1): 434-437 [Google Scholar]
- Schiopu C, Ciurea E. The Maximum Flows in Planar Dynamic Networks[J]. International Journal of Computers Communications & Control, 2016, 11(2): 282-291 [CrossRef] [Google Scholar]
- Goldberg AV, Hed S, Kaplan H, Tarjan RE, Werneck RF. Maximum Flows by Incremental Breadth-First Search[C]//European Symposium on Algorithms, 2011: 457-468 [Google Scholar]
- Ghaffari M, Karrenbauer A, Kuhn F. Near-Optimal Distributed Maximum Flow: Extended Abstract[C]//ACM Symposium on Principles of Distributed Computing, 2015: 81-90 [Google Scholar]
- Sherman J. Nearly Maximum Flows in Nearly Linear Time[C]//IEEE Symposium on Foundations of Computer Science, 2013: 263–– [Google Scholar]
- Liers F, Pardella G. Simplifying Maximum Flow Computations:The Effect of Shrinking and Good Initial Flows[J]. Discrete Applied Mathematics, 2011, 159(17): 2187-2203 [Article] [CrossRef] [Google Scholar]
- Dan G. Very Simple Methods for All Pairs Network Flow Analysis[J]. Siam Journal on Computing, 1990, 19(1): 143-155 [Article] [CrossRef] [Google Scholar]
- Zhang Y, Xu X, Hua B. Contracting Community for Computing Maximum Flow[C]//IEEE International Conference on Granular Computing, 2012: 651-656 [Google Scholar]
- Zhang Y P, Hua B, Jiang J, et al. Research on the Maximum Flow in Large-Scale Network[C]//International Conference on Computational Intelligence and Security(CIS), 2011: 482-486 [Google Scholar]
- Scheuermann B, Rosenhahn B. Slimcuts: Graphcuts for High Resolution Images Using Graph Reduction[C]//International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2011: 219-232 [Google Scholar]
- Zhen C, Zhang L. The Computation of Maximum Flow in Network Analysis Based on Quotient Space Theory[J]. Chinese Journal of Computers, 2015, 38(8): 1705-1712 [Article] [Google Scholar]
- Niklas B, Blelloch G, Shun J. Efficient Implementation of a Synchronous Parallel Push-Relabel Algorithm[C]//European Symposia on Algorithms, 2015: 106-117 [Google Scholar]
- Soner S, Ozturan C. Experiences with Parallel Multi-Threaded Network Maximum Flow Algorithm[J]. Partnership for Advanced Computing in Europe, 2013, 2013(1): 1-10 [Google Scholar]
- Benoit D, Dupont E, Zhang W. Distributed Max-Flow in Spark[EB/OL]. (2015-06-03)[2017-04-06]. <a href="http://stanford.edu/~rezab/classes/cme323/S15/projects/distributed_max_flow_report.pdf" target="_blank">http://stanford.edu/~rezab/classes/cme323/S15/projects/distributed_max_flow_report.pdf</a> [Google Scholar]
- Halim F, Yap R, Wu Y. A Mapreduce-Based Maximum-Flow Algorithm for Large Small-World Network Graphs[C]//International Conference on Distributed Computing Systems(ICDCS), 2011: 192-202 [Google Scholar]
- Goldfarb D, Grigoriadis M D. A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow[J]. Annals of Operations Research, 1988, 13(1): 81-123 [Article] [CrossRef] [Google Scholar]
- Goldberg, A V. Two-Level Push-Relabel Algorithm for the Maximum Flow Problem[C]//The Fifth Conference on Algorithmic Aspects in Information Management, 2009: 212-225 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.