Open Access
Issue
JNWPU
Volume 36, Number 6, December 2018
Page(s) 1093 - 1101
DOI https://doi.org/10.1051/jnwpu/20183661093
Published online 12 March 2019
  1. Coroneos R M. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine[R]. NASA/TM-2012-217632 [Google Scholar]
  2. Zhang Shuai, Zhu Xi, Sun Haitao, et al. Review of Researches on Composite Marine Propellers[J]. Advances in Mechanics, 2012, 42(5): 620-633 (in Chinese) [Article] [Google Scholar]
  3. Chamis C C, Blankson I M. Exo-Skeletal Engine: Novel Engine Concept[R]. NASA/TM-2004-212621 [Google Scholar]
  4. Latife K, Galib A, Christos C C. Structural Evaluation of Exoskeletal Engine Fan Blades[R]. AIAA-2003-1861 [Google Scholar]
  5. Galib A, Christos C. Durability and Damage Tolerance Evaluation of a Composite Rotor for Advanced Engine Applications[R]. AIAA-2005-1834 [Google Scholar]
  6. Luczak M, Manzato S, Peeters B, et al. Experimental Verification of the Implementation of Bend-Twist Coupling in a Wind Turbine Blade[C]//Proceedings of European Wind Energy Association, 2011 [Google Scholar]
  7. Amoo L M. On the Design and Structural Analysis of Jet Engine Fan Blade Structures[J]. Progress in Aerospace Sciences, 2013, 60: 1-11 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. Young Y L. Dynamic Hydroelastic Scaling of Self-Adaptive Composite Marine Rotors[J]. Composite Structures, 2010, 92(1): 97-106 [Article] [CrossRef] [Google Scholar]
  9. Zhou Xingyin, An Liqiang, Wang Zhangqi. Bend-twist Coupling Effect of Symmetric Un-Uniform Laminate Plate Beam[J]. Act Materiae Compositae Sinica, 2017, 34(7): 1462-1468 (in Chinese) [Article] [Google Scholar]
  10. Peng Feng. The Study of Laying Parameters Influences on the Performance of Carbon Fiber Marine Propeller[D]. Wuhan, Wuhan University of Technology, 2014 (in Chinese) [Google Scholar]
  11. Xiao J, Chen Y, Zhu Q, et al. A General Ply Design for Aero Engine Composite Fan Blade[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017 [Google Scholar]
  12. Abdul M K, Daniel O A, Vinay D, et al. Effects of Bend-Twist Coupling on Composite Propeller Performance[J]. Mechanics of Composite Materials and Structures, 2010, 7(4): 383-401 [Article] [Google Scholar]
  13. Mark C. Design Limits of Bend Twist Coupled Wind Turbine Blades[R]. AIAA-2012-1501 [Google Scholar]
  14. Liu Z, Young Y L. Utilization of Bend-twist Coupling for Performance Enhancement of Composite Marine Propellers[J]. Journal of Fluids and Structures, 2009, 25(6): 1102-1116 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. Young Y L. Fluid-Structure Interaction Analysis of Flexible Composite Marine Propellers[J]. Journal of Fluids and Structures, 2008, 24(6): 799-818 [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.