Open Access
Volume 37, Number 2, April 2019
Page(s) 232 - 241
Published online 05 August 2019
  1. Qu X, Zhang R, LIU B, et al. An Improved TLBO Based Memetic Algorithm for Aerodynamic Shape Optimization[J]. Engineering Applications of Artificial Intelligence, 2017, 57: 1–15 [Article] [CrossRef] [Google Scholar]
  2. Leifsson L, Koziel S, Tesfahunegn Y A. Multiobjective Aerodynamic Optimization by Variable-Fidelity Models and Response Surface Surrogates[J]. AIAA Journal, 2016, 54: 531–541 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. Ebrahimi M, Jahangirian AAccelerating Global Optimization of Aerodynamic Shapes Using a New Surrogate-Assisted Parallel Genetic Algorithm[J]. Engineering Optimization, 2017, 49(12): 1–16 [Article] [CrossRef] [Google Scholar]
  4. Cao L, Zhang D. Aerodynamic Configuration Optimization for Hypersonic Gliding Vehicle Based on Improved Hybrid Multi-Objective PSO Algorithm[C]//IEEE International Conference on Signal Processing, Communications and Computing, 2015: 1–5 [Google Scholar]
  5. Song L, Luo C, Li J, et al. Aerodynamic Optimization of Axial Turbomachinery Blades Using Parallel Adaptive Range Differential Evolution and Reynolds-Averaged Navier-Stokes Solutions[J]. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(2): 283–303 [Article] [CrossRef] [Google Scholar]
  6. Weishuang L U, Tian Y, Liu PAerodynamic Optimization and Mechanism Design of Flexible Variable Camber Trailing-Edge Flap[J]. Chinese Journal of Aeronautics, 2017, 30(3): 988–1003 [Article] [CrossRef] [Google Scholar]
  7. Koo D, Zingg D W. Investigation into Aerodynamic Shape Optimization of Planar and Nonplanar Wings[J]. AIAA Journal, 2017, 56(1): 1–14 [Google Scholar]
  8. Li Ding, Xia LuApplication of a Hybrid Particle Swarm Optimization to Airfoil Design Aeronautical Computing Technique, 2010, 40(6): 66–71 (in Chinese) [Article] [Google Scholar]
  9. Chen Jin, Guo Xiaofeng, Sun Zhenye, et al. Optimization of Wind Turbine Thick Airfoils Using Improved Multi-Objective Particle Swarm Algorithm Journal of Northeastern University, 2016, 37(2): 232–236 (in Chinese) [Article] [Google Scholar]
  10. Li Xin, Qu Zhuanli, Li Geng, et al. A Numerical Optimization for High Efficiency and Low Noise Airfoils Journal of Vibration and Shock, 2017, 36(4): 66–72 (in Chinese) [Article] [Google Scholar]
  11. Weron A, Weron R. Computer Simulation of Levy-α Stable Variables and Processes. Poland, Springer, Berlin Heidelberg 1995379–392 [Google Scholar]
  12. Kogon S M, Manolakis D G. Signal Modeling with Self-Similar α Stable Processes:The Fractional Levy Stable Motion Model[J]. IEEE Trans on Signal Processing, 1996, 44(4): 1006–1010 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  13. Wei J L, Jambek A B, Neoh S C. Kursawe and ZDT Functions Optimization Using Hybrid Micro Genetic Algorithm(HMGA)[J]. Soft Computing-a Fusion of Foundations, Methodologies and Applications, 2015, 19(12): 3571–3580 [Article] [Google Scholar]
  14. Li X. Better Spread and Convergence: Particle Swarm Multiobjective Optimization Using the Maximin Fitness Function[C]//Genetic and Evolutionary Computation Conference, 2004: 117–128 [Google Scholar]
  15. Peng H, Li R, Cao L L, et al. Multiple Swarms Multi-Objective Particle Swarm Optimization Based on Decomposition[J]. Procedia Engineering, 2011, 15(2): 3371–3375 [CrossRef] [Google Scholar]
  16. Peng X, Liu D, Shan J, et al. Airfoil Aerodynamic Optimization Based on an Improved Genetic Algorithm[C]//International Conference on Intelligent Systems Design & Engineering Applications, 2014: 133–137 [Google Scholar]
  17. Uoigne Alan Le, Qin NingVariable-Fidelity Aerodynamic Optimization for Turbulent Flows Using a Discrete Adjoint Formulation[J]. AIAA Journal, 2004, 42(42): 1281–1292 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. Laurenceau J, Meaux M, Montagnac M, et al. Comparison of Gradient-Based and Gradient-Enhanced Response-Surface-Based Optimizers[J]. AIAA Journal, 2010, 48(5): 981–994 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  19. Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multi-Objective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182–197 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.