Open Access
Issue
JNWPU
Volume 37, Number 6, December 2019
Page(s) 1271 - 1277
DOI https://doi.org/10.1051/jnwpu/20193761271
Published online 11 February 2020
  1. Larochelle H, Erhan D, Bengio Y. Zero-Data Learning of New Tasks[C]//23rd AAAI Conference on Artificial Intelligence, 2008: 646–651 [Google Scholar]
  2. Lampert C H, Nickisch H, Harmeling S. Attribute-Based Classification for Zero-Shot Visual Object Categorization[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 36(3): 453–465 [Article] [CrossRef] [Google Scholar]
  3. Wang D, Li Y, Lin Y, et al. Relational Knowledge Transfer for Zero-Shot Learning[C]//Thirtieth AAAI Conference on Artificial Intelligence, 2016: 2145–2151 [Google Scholar]
  4. Yu J, Wu S, Wang L, et al. Robust Zero-Shot Learning with Source Attributes Noise[C]//2016 International Conference on Progress in Informatics and Computing, 2016: 205–209 [Google Scholar]
  5. Wang L, Wu S, Yu J, et al. Learning Discriminative Instance Attribute for Zero-Shot Classification[C]//2016 International Conference on Progress in Informatics and Computing, 2016: 210–213 [Google Scholar]
  6. Cheng Y, Qiao X, Wang X, et al. Random Forest Classifier for Zero-Shot Learning Based on Relative Attribute[J]. IEEE Trans on Neural Networks, 2018, 29(5): 1662–1674 [Article] [CrossRef] [Google Scholar]
  7. Wang S, Jiang S, Huang Q, et al. S3MKL: Scalable Semi-Supervised Multiple Kernel Learning for Image Data Mining[C]//Proceedings of the 18th ACM International Conference on Multimedia, 2010: 163–172 [Google Scholar]
  8. Socher R, Ganjoo M, Manning C D, et al. Zero-Shot Learning Through Cross-Modal Transfer[C]//Advances in Neural Information Processing Systems, 2013: 935–943 [Google Scholar]
  9. Li Y, Wang D, Hu H, et al. Zero-Shot Recognition Using Dual Visual-Semantic Mapping Paths[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3279–3287 [Google Scholar]
  10. Kodirov E, Xiang T, Gong S. Semantic Autoencoder for Zero-Shot Learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3174–3183 [Google Scholar]
  11. Zhang L, Xiang T, Gong S. Learning a Deep Embedding Model for Zero-Shot Learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2021–2030 [Google Scholar]
  12. Frome A, Corrado G S, Shlens J, et al. Devise: a Deep Visual-Semantic Embedding Model[C]//Advances in Neural Information Processing Systems, 2013: 2121–2129 [Google Scholar]
  13. Yang Y, Hospedales T M. A Unified Perspective on Multi-Domain and Multi-Task Learning[J/OL](2015-03-26)[2019-09-17]. https://arxiv.org/bas/1412.7489,2014 [Google Scholar]
  14. Jimmy Lei BA, Swersky K, Fidler S. Predicting Deep Zero-Shot Convolutional Neural Networks Using Textual Descriptions[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 4247–4255 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.