Open Access
Volume 38, Number 1, February 2020
Page(s) 40 - 47
Published online 12 May 2020
  1. Becker J V. The X-15 Program in Retrospect[C]//Deutsche Gesellschaft fur Luftund Raumfahrt, Bonn, 1968: 1–3 [Google Scholar]
  2. Hoff N J. Thermal Buckling of Supersonic Wing Panels[J]. Journal of the Aeronautical Sciences, 1965, 23(11): 1019–1028 [Article] [CrossRef] [Google Scholar]
  3. John G. TAWRESEY, James E. LIUM. Elastic-Inelastic Buckling of Stiffened Panels Subject to Thermal Gradient[J]. Journal of Aircraft, 1972, 9(2) 178–185 [Article] [CrossRef] [Google Scholar]
  4. Earl A. THORNTON, JAMES D. KOLENSKIT, ROBERT P. MARINO. Finite Element Study of Plate Buckling Induced by Spatial Temperature Gradients[C]//American Institute of Aeronautics and Astronautics, United States, 1992: 2313–2326 [Google Scholar]
  5. Xue D Y, BOSTIC S, MCGOWAN D. Integrated Transient Thermal-Structural and Stability Analyses of Thermally Loaded Structures[C]//35th Structures, Structural Dynamics, and Materials Conference, 1994: 2207–2216 [Google Scholar]
  6. Gossard M L, SEIDE P, ROBERTS W M. Thermal Buckling of Plates[R]. NACA/TN 2771, 1952 [Google Scholar]
  7. Cong Linhua, Liu Ningfu. Study on Test Method for Thermal Buckling of Stiffened Panel[J]. Engineering & Test, 2017, 57(4): 33–36 [Article] (in Chinese) [Google Scholar]
  8. Niu Peng, Li Xu, LI Shirong, et al. The Thermal Buckling Behavior of Timoshenko Sandwich Beam under Elastic Constraint[J]. Engineering Mechanics, 2018, 35(suppl 1): 13–16+39 [Article] (in Chinese) [Google Scholar]
  9. Maciej Taczał, Ryszard Buczkowski, Michal Kleiber. Nonlinear Buckling and Post-Buckling Response of Stiffened FGM Plates in Thermal Environments[J]. Composites Part B, 2017, 109: 238–247 [Article] [CrossRef] [Google Scholar]
  10. Wu Helong, Sritawat Kitipornchai, Yang Jie. Thermal Buckling and Post-Buckling of Functionally Graded Graphene Nanocomposite Plates[J]. Materials and Design, 2017, 132: 430–441 [Article] [CrossRef] [Google Scholar]
  11. Li Kezhe, Zhao Biao, LI Xiaojiao, et al. Study on Thermal Buckling of Functionally Graded Cylindrical Shells[J]. Aerospace Shanghai, 2016, 33(5): 71–76 [Article] (in Chinese) [Google Scholar]
  12. Tian Xinpeng, Li Jinqiang, Guo Zhangxin, et al. The Thermal Buckling Behavior of Composite Laminated Panels under Uniform and Non-Uniform Temperature Distribution[J]. Journal of Taiyuan University of Technlogy, 2016, 47(2): 264–269 [Article] (in Chinese) [Google Scholar]
  13. Zhang Yang, LI Gen, Liew K M. Thermomechanical Buckling Characteristic of Ultrathin Films Based on Nonlocal Elasticity Theory[J]. Composites Part B, 2018, 153: 184–193 [Article] [CrossRef] [Google Scholar]
  14. Liu Zhimin, Numerical Simulation of Stiffened Panel in Thermal Environment[J]. Engineering & Test, 2017, 57(3): 22–26+88 [Article] (in Chinese) [Google Scholar]
  15. Tran L V, Thai C H, Nguyen X N. An Isogeometric Finite Element Formulation for Thermal Buckling Analysis of Functionally Graded Plates[J]. Finite Elem Anal, 2013, 73: 65–76 [Article] [CrossRef] [Google Scholar]
  16. Farzam A, Hassani B. Thermal and Mechanical Buckling Analysis of FG Carbon Nanotube Reinforced Composite Plates Using Modified Couple Stress Theory and Isogeometric Approach[J]. Composite Structures– 2018, 206: 774–790 [Article] [CrossRef] [Google Scholar]
  17. Zadeh E J, Azhari M, Boroomand B. Thermal Buckling of Functionally Graded Skew and Trapezoidal Plates with Different Boundary Conditions Using the Element-Free Galerkin Method[J]. European Journal of Mechanics/A Solids, 2013, 42: 18–26 [Article] [CrossRef] [Google Scholar]
  18. Shiau Lechung Shiau, Kuo Shihyao Kuo, Chen Chengyuan. Thermal Buckling Behavior of Composite Laminated Plates[J]. Composite Structures, 2010, 92: 508–514 [Article] [CrossRef] [Google Scholar]
  19. Xu Yingjie, Ren Shixuan, ZHANG Weihong, et al. Study of Thermal Buckling Behavior of Plain Woven C/SiC Composite Plate Using Digital Image Correlation Technique and Finite Element Simulation[J]. Thin-Walled Structures, 2018, 131: 385–392 [Article] [CrossRef] [Google Scholar]
  20. Ganapathi Manickam, Anirudh Bharath, Aditya Narayan Das, et al. Thermal Buckling Behavior of Variable Stiffness Laminated Composite Plates[J]. Materials Today Communications, 2018, 16: 142–151 [Article] [CrossRef] [Google Scholar]
  21. REN Qingmei. Advances in Thermal Buckling Behavior of Thin-Walled Structures of Hypersonic Aircraft[J]. Aerodynamic Missile Journal, 2018, (7): 6–12 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.