Open Access
Volume 38, Number 3, June 2020
Page(s) 471 - 477
Published online 06 August 2020
  1. Yang Honghui, Dai Jian, Sun Jincai, et al. A New Adaptive Immune Feature Selection Algorithm for Underwater Acoustic Target Classification[J]. Journal of Xi'an Jiaotong University, 2011, 45(12): 28-33 [Article] (in Chinese) [Google Scholar]
  2. Alelyani S, Tang J, Liu H. Feature Selection for Clustering:a Review[M]. New York: CRC Press, 2014 [Google Scholar]
  3. Yu L, Liu H. Efficient Feature Selection via Analysis of Relevance and Redundancy[J]. Journal of Machine Learning Research, 2004, 5:1205-1224 [Google Scholar]
  4. Tang J, Alelyani S, Liu H. Feature Selection for Classification:a Review[M]. New York:CRC Press, 2014 [Google Scholar]
  5. Abdi H, Williams L J. Principal Component Analysis[J]. WIREs Computational Statistics, 2010, 2(4): 433-459 [Article] [CrossRef] [Google Scholar]
  6. Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection[J]. Journal of Machine Learning Research, 2003, 3:1157-1182 [Google Scholar]
  7. Yang Honghui, Sun Jincai, Yuan Hong. A New Method for Feature Selection for Underwater Acoustic Targets[J]. Journal of Northwestern Polytechnical University, 2005, 23(4): 512-515 [Article] (in Chinese) [Google Scholar]
  8. Tibshirani R. Regression Shrinkage and Selection via the Lasso:a Retrospective[J]. Journal of the Royal Statistical Society:Series B(Statistical Methodology), 2011, 73(3): 273-282 [Article] [CrossRef] [MathSciNet] [Google Scholar]
  9. Zou H. The Adaptive Lasso and Its Oracle Properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429 [Article] [CrossRef] [MathSciNet] [Google Scholar]
  10. Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net[J]. Journal of the Royal Statistical Society:Series B(Statistical Methodology), 2005, 67(2): 301-320 [Article] [Google Scholar]
  11. Cai J, Luo J, Wang S, et al. Feature Selection in Machine Learning:a New Perspective[J]. Neurocomputing, 2018, 300:70-79 [Article] [CrossRef] [Google Scholar]
  12. Gu Q, Li Z, Han J. Generalized Fisher Score for Feature Selection[C]//Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Arlington, Virginia, 2011: 266-273 [Google Scholar]
  13. Zhou M. A Hybrid Feature Selection Method Based on Fisher Score and Genetic Algorithm[J]. Journal of Mathematical Sciences:Advances and Applications, 2016, 37(1):51-78 [Article] [CrossRef] [Google Scholar]
  14. He X, Cai D, Niyogi P. Laplacian Score for Feature Selection[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems, Cambridge, MA, 2005: 507-514 [Google Scholar]
  15. Huang R, Jiang W, Sun G. Manifold-Based Constraint Laplacian Score for Multi-Label Feature Selection[J]. Pattern Recognition Letters, 2018, 112: 346-352 [Article] [CrossRef] [Google Scholar]
  16. Hall M A. Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning[C]//Proceedings of the Seventeenth International Conference on Machine Learning, San Francisco, CA, 2000: 359-366 [Google Scholar]
  17. Mursalin M, Zhang Y, Chen Y, et al. Automated Epileptic Seizure Detection Using Improved Correlation-Based Feature Selection with Random Forest Classifier[J]. Neurocomputing, 2017, 241:204-214 [Article] [CrossRef] [Google Scholar]
  18. Zhao Z, Wang L, Liu H, et al. On Similarity Preserving Feature Selection[J]. IEEE Trans on Knowledge and Data Engineering, 2013, 25(3): 619-632 [Article] [CrossRef] [Google Scholar]
  19. Hu L, Gao W, Zhao K, et al. Feature Selection Considering Two Types of Feature Relevancy and Feature Interdependency[J]. Expert Systems with Applications, 2018, 93: 423-434 [Article] [CrossRef] [Google Scholar]
  20. Santos-Domínguez D, Torres-Guijarro S, Cardenal-López A, et al. ShipsEar:an Underwater Vessel Noise Database[J]. Applied Acoustics, 2016, 113:64-69 [Article] [CrossRef] [Google Scholar]
  21. Reshef D N, Reshef Y A, Finucane H K, et al. Detecting Novel Associations in Large Data Sets[J]. Science, 2011, 334(6062): 1518-1524 [Article] [CrossRef] [Google Scholar]
  22. Reshef Y A, Reshef D N, Finucane H K. Measuring Dependence Powerfully and Equitably[J]. Journal of Machine Learning Research, 2016, 17(211): 1-63 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.