Open Access
 Issue JNWPU Volume 38, Number 3, June 2020 471 - 477 https://doi.org/10.1051/jnwpu/20203830471 06 August 2020

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 2 归一化最大信息系数特征选择方法

### 2.2 NMIC-FS特征选择策略

NMIC-FS整体流程如下:

1) , 由(10)式更新已选特征子集S, R=F\S;

2) , 由(11)式更新已选特征子集S, R=F\S;

## 3 实验数据分析

1) 目标辐射噪声数据

2) 数据分析流程

### 3.3 NMIC-FS、LS、CFS和LASSO特征选择比较实验

#### 3.3.1 最佳二维特征的样本空间分布

 图14种方法最佳特征滚装船和摩托艇样本空间分布图

#### 3.3.2 特征选择过程对比

 图2基于SVM分类性能的特征选择过程
 图3基于RF分类性能的特征选择过程

## References

1. Yang Honghui, Dai Jian, Sun Jincai, et al. A New Adaptive Immune Feature Selection Algorithm for Underwater Acoustic Target Classification[J]. Journal of Xi'an Jiaotong University, 2011, 45(12): 28-33 [Article] (in Chinese) [Google Scholar]
2. Alelyani S, Tang J, Liu H. Feature Selection for Clustering:a Review[M]. New York: CRC Press, 2014 [Google Scholar]
3. Yu L, Liu H. Efficient Feature Selection via Analysis of Relevance and Redundancy[J]. Journal of Machine Learning Research, 2004, 5:1205-1224 [Google Scholar]
4. Tang J, Alelyani S, Liu H. Feature Selection for Classification:a Review[M]. New York:CRC Press, 2014 [Google Scholar]
5. Abdi H, Williams L J. Principal Component Analysis[J]. WIREs Computational Statistics, 2010, 2(4): 433-459 [Article] [CrossRef] [Google Scholar]
6. Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection[J]. Journal of Machine Learning Research, 2003, 3:1157-1182 [Google Scholar]
7. Yang Honghui, Sun Jincai, Yuan Hong. A New Method for Feature Selection for Underwater Acoustic Targets[J]. Journal of Northwestern Polytechnical University, 2005, 23(4): 512-515 [Article] (in Chinese) [Google Scholar]
8. Tibshirani R. Regression Shrinkage and Selection via the Lasso:a Retrospective[J]. Journal of the Royal Statistical Society:Series B(Statistical Methodology), 2011, 73(3): 273-282 [Article] [CrossRef] [MathSciNet] [Google Scholar]
9. Zou H. The Adaptive Lasso and Its Oracle Properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429 [Article] [CrossRef] [MathSciNet] [Google Scholar]
10. Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net[J]. Journal of the Royal Statistical Society:Series B(Statistical Methodology), 2005, 67(2): 301-320 [Article] [Google Scholar]
11. Cai J, Luo J, Wang S, et al. Feature Selection in Machine Learning:a New Perspective[J]. Neurocomputing, 2018, 300:70-79 [Article] [CrossRef] [Google Scholar]
12. Gu Q, Li Z, Han J. Generalized Fisher Score for Feature Selection[C]//Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Arlington, Virginia, 2011: 266-273 [Google Scholar]
13. Zhou M. A Hybrid Feature Selection Method Based on Fisher Score and Genetic Algorithm[J]. Journal of Mathematical Sciences:Advances and Applications, 2016, 37(1):51-78 [Article] [CrossRef] [Google Scholar]
14. He X, Cai D, Niyogi P. Laplacian Score for Feature Selection[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems, Cambridge, MA, 2005: 507-514 [Google Scholar]
15. Huang R, Jiang W, Sun G. Manifold-Based Constraint Laplacian Score for Multi-Label Feature Selection[J]. Pattern Recognition Letters, 2018, 112: 346-352 [Article] [CrossRef] [Google Scholar]
16. Hall M A. Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning[C]//Proceedings of the Seventeenth International Conference on Machine Learning, San Francisco, CA, 2000: 359-366 [Google Scholar]
17. Mursalin M, Zhang Y, Chen Y, et al. Automated Epileptic Seizure Detection Using Improved Correlation-Based Feature Selection with Random Forest Classifier[J]. Neurocomputing, 2017, 241:204-214 [Article] [CrossRef] [Google Scholar]
18. Zhao Z, Wang L, Liu H, et al. On Similarity Preserving Feature Selection[J]. IEEE Trans on Knowledge and Data Engineering, 2013, 25(3): 619-632 [Article] [CrossRef] [Google Scholar]
19. Hu L, Gao W, Zhao K, et al. Feature Selection Considering Two Types of Feature Relevancy and Feature Interdependency[J]. Expert Systems with Applications, 2018, 93: 423-434 [Article] [CrossRef] [Google Scholar]
20. Santos-Domínguez D, Torres-Guijarro S, Cardenal-López A, et al. ShipsEar:an Underwater Vessel Noise Database[J]. Applied Acoustics, 2016, 113:64-69 [Article] [CrossRef] [Google Scholar]
21. Reshef D N, Reshef Y A, Finucane H K, et al. Detecting Novel Associations in Large Data Sets[J]. Science, 2011, 334(6062): 1518-1524 [Article] [CrossRef] [Google Scholar]
22. Reshef Y A, Reshef D N, Finucane H K. Measuring Dependence Powerfully and Equitably[J]. Journal of Machine Learning Research, 2016, 17(211): 1-63 [Article] [Google Scholar]

## All Figures

 图14种方法最佳特征滚装船和摩托艇样本空间分布图 In the text
 图2基于SVM分类性能的特征选择过程 In the text
 图3基于RF分类性能的特征选择过程 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.