Open Access
 Issue JNWPU Volume 38, Number 3, June 2020 478 - 484 https://doi.org/10.1051/jnwpu/20203830478 06 August 2020

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 计算模型及径向尺度比

2.1 计算模型

 图1几何模型

 图2边界条件

2.1.3 网格拓扑

 图3计算模型网格分布情况

3 数值仿真与结果

3.1 模型验证

 图4数值计算与实验结果比对

3.2 计算结果

Logvinovich[20]建立了尾自由闭合超空泡流型阵泄气率的半经验公式

 图5不同径向尺度比空泡流型
 图6不同径向尺度比空泡轮廓曲线
 图7不同径向尺度比流场压力分布图
 图8不同径向尺度比空泡内压力分布
 图9数值模拟与半经验公式对比结果

4 结论

2) 在阵泄气超空化研究中, 选择涡管泄气超空泡的流域径向尺度是远远不够的, 径向尺度比Δ大于54.0时, 阵泄气超空泡流型模拟结果与Logvinovich泄气率半经验公式结果相吻合;

3) 通气超空泡外部流场压力沿x轴方向整体呈现下降趋势, 但在对应通气空化的外部区域, 压力先减小后增大, 压力最低点对应超空泡最大直径位置;

4) 超空泡内部压力沿x轴方向增大, 并且压力随流域径向尺度比增大而减小; 径向尺度比对空泡内压力的影响是引起超空泡形态改变的主要原因。

References

1. Li D J, Luo K, Huang C, et al. Dynamics Model and Control of High-Speed Supercavitating Vehicles Incorporated with Time-Delay[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2014, 15(3/4): 221-230 [Article] [Google Scholar]
2. Zhang Yuwen, Yuan Xulong, Deng Fei. Fluid Dynamics of Supercavitating Underwater Vechicles[M]. Beijing: National Defense Industry Press, 2014 [Google Scholar]
3. Yuan X L, Xing T. Hydrodynamic Characteristics of a Supercavitating Vehicle's Aft Body[J]. Ocean Engineering, 2016, 114:37-46 [Article] [CrossRef] [Google Scholar]
4. Zhang Yuwen, Wang Yucai, Dang Jianjun, et al. Experimental Investigation on Cavity Flow Pattern of Slender Bodies[J]. Journal of Hydrodynamics, Ser A, 2004, 19(3): 394-400 (in Chinese) [Google Scholar]
5. Karn A, Arant R E A, Hong J, et al. An Experimental Investigation into Supercavity Closure Mechanisms[J]. Journal of Fluid Mechanics, 2016, 789: 259-284 [Article] [CrossRef] [Google Scholar]
6. Shao S Y, Karn A, Ahn B K, et al. A Comparative Study of Natural and Ventilated Supercavitation Across Two Closed Wall Water Tunnel Facilities[J]. Experimental Thermal and Fluid Science, 2017, 88: 519-529 [Article] [CrossRef] [Google Scholar]
7. Kawakami E, Arndt R E A. Investigation of the Behavior of Ventilated Supercavities[J]. Journal of the Fluids Engineering-Transactions of the ASME, 2011, 133(9): 091305 [Article] [CrossRef] [Google Scholar]
8. Lee S J, Paik B G, Kim K Y, et al. On Axial Deformation of Ventilated Supercavities in Closed Wall Tunnel Experiment[J]. Experiment Thermal and Fluid Science, 2018, 96(4): 321-328 [CrossRef] [Google Scholar]
9. Kinzel M P, Krane M H, Kirschner I N, et al. A Numerical Assessment of the Interaction of a Supercavitating Flow with a Gas Jet[J]. Ocean Engineering, 2017, 136:304-313 [Article] [CrossRef] [Google Scholar]
10. Kinzel, M P, Lindau, J W, Kunz, R F. Air Entrainment Mechanisms from Artificial Supercavities: Insight Based on Numerical Simulations[C]//Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, MI, USA, 2009: 136 [Google Scholar]
11. Zhou J J, Yu K P, Min J, et al. The Comparative Study of Ventilated Supercavity Shape in Water Tunnel and Infinite Flow Field[J]. Journal of Hydrodynamics, Ser B, 2010, 22(5): 689-696 [Article] [CrossRef] [Google Scholar]
12. Chen X, Lu C J, Li J, et al. The Wall Effect on Ventilated Cavitating Flowing in Closed Cavitation Tunnel[J]. Journal of Hydrodynamics, 2008, 20(5): 561-566 [Article] [CrossRef] [Google Scholar]
13. Lei CAO, Karn A, Arndt R E A, et al. Numerical Investigations of Pressure Distribution inside a Ventilated Supercavity[J]. Journal of Fluids Engineering, 2017, 139(2): 021301 [CrossRef] [Google Scholar]
14. Huang Chuang, Luo Kai, Dang Jianjun, et al. Influence of Flow Field's Radial Dimension on Natural Supercavity[J]. Journal of Northwestern Polytechnical, 2015, 33(6): 936-941 [Article] [Article] (in Chinese) [Google Scholar]
15. Sun Shiming, Yan Kai, Chen Weizhen. Numerical Simulation of Ventilation Law for Supercavitating Vehicle[J]. Torpedo Technology, 2014, 22(2): 81-86 [Article] (in Chinese) [Google Scholar]
16. Hu Yong. The Interaction between Ventilated Supercavitating Flow and Exhausted Gas of an Underwater Vehicle[D]. Shanghai: Shanghai Jiaotong University, 2008(in Chinese) [Google Scholar]
17. Skidmore G. The Pulsation of Ventilated Supercavities[D]. Pennsyvania, United States: Pennsyvania State University, 2012 [Google Scholar]
18. Zhou J J, Yu K P, Yang M, et al. On the Gas Leakage Way of Supercavity and Vehicle[J]. Journal of Hydrodynamic, Ser B, 2010, 22(5): 86-871 [Google Scholar]
19. Zhou Jingjun, Yu Kaiping, Yang Ming, et al. Numerical Simulation of Gas Leakage Mechanism of Ventilated Supercavity under the Condition of Low Froude Number[J]. Engineering Mechanics, 2011, 28(1): 251-256 [Article] (in Chinese) [Google Scholar]
20. Logvinovich G V. Hydrodynamics of Flows with Free Boundaries[M]. Kiev: Naukova Dumka Publishing, 1969 [Google Scholar]

All Figures

 图1几何模型 In the text
 图2边界条件 In the text
 图3计算模型网格分布情况 In the text
 图4数值计算与实验结果比对 In the text
 图5不同径向尺度比空泡流型 In the text
 图6不同径向尺度比空泡轮廓曲线 In the text
 图7不同径向尺度比流场压力分布图 In the text
 图8不同径向尺度比空泡内压力分布 In the text
 图9数值模拟与半经验公式对比结果 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.