Open Access
Issue
JNWPU
Volume 38, Number 3, June 2020
Page(s) 550 - 557
DOI https://doi.org/10.1051/jnwpu/20203830550
Published online 06 August 2020
  1. Hamel T, Mahony R. Attitude Estimation on SO [3] Based on Direct Inertial Measurements[C]//ICRA 2006. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006 [Google Scholar]
  2. Qin Yongyuan. The Principle of Kalman Filter and Integrated Navigation[M]. Xi'an: Northwestern Polytechnical University Publishing House, 2015 (in Chinese) [Google Scholar]
  3. Lefferts E J, Markley F L, Shuster M D. Kalman Filtering for Spacecraft Attitude Estimation[C]//Proc AIAA 20th Aerospace Sciences Meeting, 1982:1-16 [Google Scholar]
  4. Crassidis J L, Markley F L, Cheng Y. Survey of Nonlinear Attitude Estimation Methods[J]. Journal of Guidance Control and Dynamics, 2007, 30(1): 12-28 [Article] [CrossRef] [Google Scholar]
  5. Madgwick S O H, Harrison A J L, Vaidyanathan A. Estimation of IMU and MARG Orientation Using a Gradient Descent Algorithm[C]//IEEE International Conference on Rehabilitation Robotics, 2011 [Google Scholar]
  6. Zhu Yadongyang, Lin Jun, Zhao Fa, et al. A least Squares Method Based on Quaternions to Derive Absolute Orientation of Geophones with AHRS[J]. Journal of Geophysics and Engineering, 2018, 15(6): 2614-2624 [Article] [CrossRef] [Google Scholar]
  7. Salcudean S. A Globally Convergent Angular Velocity Observer for Rigid Body Motion[J]. IEEE Trans on Automatic Control, 1991, 36(12): 1493-1497 [Article] [CrossRef] [Google Scholar]
  8. Black H D. A Passive system for Determining the Attitude of a Satellite[J]. AIAA Journal, 1964, 2(7): 1350-1351 [Article] [CrossRef] [Google Scholar]
  9. Bar-Itzhack I Y, Harman R R. Optimized TRIAD Algorithm for Attitudedetermination[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1): 208-211 [Article] [CrossRef] [Google Scholar]
  10. Grip H F, Fossen T I, Johansen T A, et al. A Nonlinear Observer for Integration of GNSS and IMU Measurements with Gyro Bias Estimation[C]//American Control Conference, 2012 [Google Scholar]
  11. Nagy S B, Arne J T, Fossen T I, et al. Attitude Estimation by Multiplicative Exogenous Kalman Filter[J]. Automatica, 2018, 95:347-355 [Article] [CrossRef] [Google Scholar]
  12. Huang Xiaopeng. Principles of Kalman Filter and Applications:MATLAB Simulation[M]. Beijing: Publishing House of Electronics Industry, 2015 (in Chinses) [Google Scholar]
  13. Batista P, Silvestre C, Oliveira P. Globally Exponentially Stable Cascade Observers for Attitude Estimation[J]. Control Engineering Practice, 2012, 20(2): 148-155 [Article] [CrossRef] [Google Scholar]
  14. Shuster M D, OH S D. Three-Axis Attitude Determination From Vector Observations[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(1): 70-77 [Article] [CrossRef] [Google Scholar]
  15. LorÍa A, Panteley E. 2 Cascaded Nonlinear Time-Varying Systems:Analysis and Design[J]. Lecture Notes in Control & Information Sciences, 2001, 311:579-579 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.