Open Access
Issue
JNWPU
Volume 38, Number 3, June 2020
Page(s) 540 - 549
DOI https://doi.org/10.1051/jnwpu/20203830540
Published online 06 August 2020
  1. Shi R, Peng J. Morphing Strategy Design for Variable-Wing Aircraft[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. 2015: 3002 [Google Scholar]
  2. Wu Z, Lu J, Rajput J, et al. Adaptive Neural Control Based on High Order Integral Chained Differentiator for Morphing Aircraft[EB/OL]. (2015-10-25)[2019-08-29]. https://www.hindawi.com/journals/mpe/2015/787931/ [Google Scholar]
  3. Seigler T M, Neal D A, Bae J S, et al. Modeling and Flight Control of Large-Scale Morphing Aircraft[J]. Journal of Aircraft, 2007, 44(4): 1077-1087 [Article] [CrossRef] [Google Scholar]
  4. Wu Z, Lu J, Zhou Q, et al. Modified Adaptive Neural Dynamic Surface Control for Morphing Aircraft with Input and Output Constraints[J]. Nonlinear Dynamics, 2017, 87(4): 2367-2383 [Article] [CrossRef] [Google Scholar]
  5. Shi R, Wan W. Analysis of Flight Dynamics for Large-Scale Morphing Aircraft[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2015, 87(1): 38-44 [Article] [Google Scholar]
  6. O'Grady B. Multi-Objective Optimization of a Three Cell Morphing Wing Substructure[D]. Dayton: University of Dayton, 2010 [Google Scholar]
  7. Johnson T, Frecker M, Abdalla M, et al. Nonlinear Analysis and Optimization of Diamond Cell Morphing Wings[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(7): 815-824 [Article] [CrossRef] [Google Scholar]
  8. Joo J J, Sanders B Optimal Location Of Distributed Actuators Within an In-Plane Multi-Cell Morphing Mechanism[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(4): 481-492 [Article] [CrossRef] [Google Scholar]
  9. Andersen G, Cowan D, Piatak D. Aeroelastic Modeling, Analysis and Testing of a Morphing Wing Structure[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007: 1734 [Google Scholar]
  10. Seigler T, Neal D, Inman D. Dynamic Modeling of Large-Scale Morphing Aircraft[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006: 1893 [Google Scholar]
  11. Obradovic B, Subbarao K Modeling of Flight Dynamics of Morphing Wing Aircraft[J]. Journal of Aircraft, 2011, 48(2): 391-402 [Article] [CrossRef] [Google Scholar]
  12. Yue T, Wang L, Ai J. Longitudinal Linear Parameter Varying Modeling and Simulation of Morphing Aircraft[J]. Journal of Aircraft, 2013, 50(6): 1673-1681 [Article] [CrossRef] [Google Scholar]
  13. Boothe K, Fitzpatrick K, Lind R. Controllers for Disturbance Rejection for A Linear Input-Varying Class of Morphing Aircraft[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2005: 2374 [Google Scholar]
  14. Beaverstock C S, Ajaj R, Friswell M I, et al. Effect of Span-Morphing on the Flight Modes, Stability & Control[C]//AIAA Guidance, Navigation, and Control (GNC) Conference, 2013: 4993 [Google Scholar]
  15. Yue T, Wang L, Ai J. Gain Self-Scheduled H Control for Morphing Aircraft in the Wing Transition Process Based on an LPV Model[J]. Chinese Journal of Aeronautics, 2013, 26(4): 909-917 [Article] [CrossRef] [Google Scholar]
  16. Baldelli D H, Lee D H, Sánchez Peáa R S, et al. Modeling and Control of an Aeroelastic Morphing Vehicle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1687-1699 [Article] [CrossRef] [Google Scholar]
  17. Gandhi N, Jha A, Monaco J, et al. Intelligent Control of a Morphing Aircraft[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007: 1716 [Google Scholar]
  18. Nobleheart W, Shivanapura Lakshmikanth G, Chakravarthy A, et al. Single Network Adaptive Critic(SNAC) Architecture for Optimal Tracking Control of a Morphing Aircraft during a Pull-up Maneuver[C]//AIAA Guidance, Navigation, and Control Conference, 2013: 5003 [Google Scholar]
  19. Valasek J, Lampton A, Marwaha M. Morphing Unmanned Air Vehicle Intelligent Shape and Flight Control[EB/OL].(2009-04-15)[2019-08-29]. https://www.researchgate.net/publication/228644798_Morphing_Unmanned_Air_Vehicle_Intelligent_Shape_and_Flight_control [Google Scholar]
  20. Chenliang W, Yan L. Adaptive Dynamic Surface Control for Linear Multivariable Systems[J]. Automatica, 2010, 46(10): 1703-1711 [Article] [CrossRef] [Google Scholar]
  21. Liu Y J, Chen C L P, Wen G X, et al. Adaptive Neural Output Feedback Tracking Control for a Class of Uncertain Discrete-Time Nonlinear Systems[J]. IEEE Trans on Neural Networks, 2011, 22(7): 1162-1167 [Article] [CrossRef] [Google Scholar]
  22. Chen M, Tao G, Jiang B. Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems with Input Saturation[J]. IEEE Trans on Neural Networks and Learning Systems, 2014, 26(9): 2086-2097 [Article] [CrossRef] [Google Scholar]
  23. Cao C, Hovakimyan N. Novel L1 Neural Network Adaptive Control Architecture with Guaranteed Transient Performance[J]. IEEE Trans on Neural Networks, 2007, 18(4): 1160-1171 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.