Open Access
Volume 38, Number 4, August 2020
Page(s) 774 - 783
Published online 06 October 2020
  1. Li L P, Cederbaum G, Schulgasser K. A Finite Element Model for Poroelastic Beams with Axial Diffusion[J]. Com puters & Structures, 1999, 73(6): 595-608 [Article] [CrossRef] [Google Scholar]
  2. Yang Xiao, Li Li. Mathematical Model for Dynamics of Incompressible Saturated Poroelastic Beam and Rod[J]. Acta Mechan ica Solida Sinica, 2006, 27(2): 159-166 [Article] (in Chinese) [Google Scholar]
  3. Wang Z H, Prevost J H, Olivier C. Bending of Fluid-Saturated Linear Poroelastic Beams with Compressible Constituents[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(4): 425-447 10.1002/nag.722 [CrossRef] [Google Scholar]
  4. Zhou Fengxi, Mi Haizhen. Free Vibration of Poroelastic Beam with Incompressible Saturated Liquid on Elastic Foundation[J]. Journal of Lanzhou University of Technology, 2014, 40(2): 118-122 [Article] (in Chinese) [Google Scholar]
  5. Lou P, Dai G L, Zeng Q Y. Finite-Element Analysis for a Timoshenko Beam Subjected to a Moving Mass[J]. Journal of Mechanical Engineering Science, 2006, 220(5): 669-678 10.1243/09544062JMES119 [CrossRef] [Google Scholar]
  6. Yang X, Wen Q. Dynamic and Quasi-Static Bending of Saturated Poroelastic Timoshenko Cantilever Beam[J]. Applied Mathematics and Mechanics, 2010, 31(8): 995-1008 10.1007/s10483-010-1335-6 [CrossRef] [Google Scholar]
  7. Wu Feng, Xu Xiaoming, Gao Qiang, et al. Analyzing the Wave Scattering in Timoshenko Beam Based on the Symplectic Theory[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1225-1352 [Article] (in Chinese) [CrossRef] [Google Scholar]
  8. Kiani K, Avili H G, Kojorian A N. On the Role of Shear Deformation in Dynamic Behavior of a Fully Saturated Poroelastic Beam Traversed by a Moving Load[J]. International Journal of Mechanical Sciences, 2015, 94/95(1): 84-95 [Article] [CrossRef] [Google Scholar]
  9. Chouiyakh H, Azrar L, Alnefaie K, et al. Vibration and Multi-Crack Identification of Timoshenko Beams under Moving Mass Using the Differential Quadrature Method[J]. International Journal of Mechanical Sciences, 2017, 120(1): 1-11 [Article] [CrossRef] [Google Scholar]
  10. Gao Qiang, Zhang Hongwu, Zhang Liang, et al. Dynamic Parametric Variational Principle and Symplectic Algorithm for Trusses with Different Tensional and Compressional Stiffnesses[J]. Journal of Vibration and Shock, 2013, 32(4): 179-184 [Article] [Google Scholar]
  11. McDonald F, McLachlan R I, Moore B E, et al. Travelling Wave Solution of Multisymplectic Discretizations of Semi-Linear Wave Equations[J]. Journal of Difference Equations and Applications, 2016, 22(7): 913-940 10.1080/10236198.2016.1162161 [CrossRef] [Google Scholar]
  12. Peng H J, Tan S J, Gao Q, et al. Symplectic Method Based on Generating Function for Receding Horizon Control of Linear Time-Varying Systems[J]. European Journal of Control, 2017, 33(1): 24-34 [Article] [CrossRef] [Google Scholar]
  13. Hu W P, Deng Z C. Multi-Symplectic Method to Analyze the Mixed State of Ⅱ-Superconductors[J]. Science in China, 2008, 51(12): 1835-1844 [Article] [Google Scholar]
  14. Hu W P, Deng Z C, Zhang Y. Multi-Symplectic Method for Peakon-Antipeakon Collision of Quasi-Degasperis-Procesi Equation[J]. Computer Physics Communications, 2014, 185(7): 2020-2028 10.1016/j.cpc.2014.04.006 [CrossRef] [Google Scholar]
  15. Hu W P, Han S M, Deng Z C, et al. Analyzing Dynamic Response of Non-Homogeneous String Fixed at Both Ends[J]. International Journal of Non-Linear Mechanics, 2012, 47(10): 1111-1115 10.1016/j.ijnonlinmec.2011.09.008 [CrossRef] [Google Scholar]
  16. Hu W P, Debg Z C, Han S M, et al. Generalized Multi-Sympletic Integrators for a Class of Hamiltonian Nonlinear Wave PDEs[J]. Journal of Computational Physics, 2013, 235(4): 394-406 [Article] [CrossRef] [Google Scholar]
  17. Liu Xuemei, Deng Zichen, Hu Weipeng. Generalized Multi-Symplectic Method and Numerical Experiment for Thermal Conduction of Saturated Poroelastic Rod[J]. Journal of Northwestern Polytechnical University, 2015, 33(2): 265-270 [Article] (in Chinese) [Google Scholar]
  18. Zhang Y, Deng Z C, Hu W P. Generalized Multi-Symplectic Integrator for Vibration of a Damping String with the Driving Force[J]. International Journal of Applied Mechanics, 2017, 9(1): 179-190 [Article] [Google Scholar]
  19. Song Shaohu, Yao Ge, Yang Xiao. Mathematical Model for Dynamics of Incompressible Saturated Poroelastic Timoshenko Beam[J]. Acta Mechanica Solida Sinica, 2010, 31(4): 397-405 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.