Open Access
Volume 38, Number 4, August 2020
Page(s) 784 - 791
Published online 06 October 2020
  1. Yan Chuanjun, Fan Wei. Pulse Detonation Engine Principle and Key Issues of Technology[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese) [Google Scholar]
  2. Roy G D, Frolov S M, Borisov A A, et al. Pulse Detonation Propulsion:Challenges, Current Status, and Future Perspective[J]. Progress in Energy and Combustion Science, 2004, 30: 545-672 10.1016/j.pecs.2004.05.001 [CrossRef] [Google Scholar]
  3. Ciccarelli G, Dorofeev S. Flame Acceleration and Transition to Detonation in Ducts[J]. Progress in Energy and Combustion Science, 2008, 34: 499-550 10.1016/j.pecs.2007.11.002 [CrossRef] [Google Scholar]
  4. Li J L, Fan W, Yan C J, et al. Performance Enhancement of a Pulse Detonation Rocket Engine[J]. Proceedings of the Combustion Institute, 2011, 33: 2243-2254 10.1016/j.proci.2010.07.048 [CrossRef] [Google Scholar]
  5. Huang Y, Tang H, Zhang C. Studies of DDT Enhancement Approaches for Kerosene-Fueled Small-Scale Pulse Detonation Engines Applications[J]. Shock Wave, 2012, 22: 615-625 10.1007/s00193-012-0396-5 [CrossRef] [Google Scholar]
  6. Goodwin G B, Houim R W, Oran E S. Shock Transition to Detonation in Channels with Obstacles[J]. Proceedings of the Combustion Institute, 2017, 36: 2717-2724 10.1016/j.proci.2016.06.160 [CrossRef] [Google Scholar]
  7. Zheng W, Kaplan C R, Houim R W, et al. Flame Acceleration and Transition to Detonation:Effects of a Composition Gradient in a Mixture of Methane and Air[J]. Proceedings of the Combustion Institute, 2019, 37: 3521-3528 10.1016/j.proci.2018.07.118 [CrossRef] [Google Scholar]
  8. Boeck L R, Berger F M, Hasslberger J, et al. Detonation Propagation in Hydrogen-Air Mixtures with Transverse Concentration Gradients[J]. Shock Wave, 2016, 26: 181-192 10.1007/s00193-015-0598-8 [CrossRef] [Google Scholar]
  9. Wang C J, Wen J X. Numerical Simulation of Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Air Mixtures with Concentration Gradients[J]. International Journal of Hydrogen Energy, 2017, 42: 7657-7663 10.1016/j.ijhydene.2016.06.107 [CrossRef] [Google Scholar]
  10. Brophy C M, Hanson R K. Fuel Distribution Effects on Pulse Detonation Engine Operation and Performance[J]. Journal of Propulsion and Power, 2006, 22(6): 1155-1161 10.2514/1.18713 [CrossRef] [Google Scholar]
  11. Mi X C, Timofeev E V, Higgins A J. Effect of Spatial Discretization of Energy on Detonation Wave Propagation[J]. Journal of Fluid Mechanics, 2017, 817: 306-338 10.1017/jfm.2017.81 [CrossRef] [Google Scholar]
  12. Wu Y W, Han Q X, Yang G Y. Effect of an Acoustic Atomizer upon Liquid-Fueled Detonation Initiations in a Detonation Tube[J]. Experimental Thermal and Fluid Science, 2019, 109: 1-9 [Article] [Google Scholar]
  13. Lu W, Fan W, Wang K, et al. Operation of a Liquid-Fueled and Valveless Pulse Detonation Rocket Engine at High Frequency[J]. Proceedings of the Combustion Institute, 2017, 36: 2657-2664 10.1016/j.proci.2016.07.098 [CrossRef] [Google Scholar]
  14. Kailasanath K. Liquid-Fueled Detonations in Tubes[J]. Journal of Propulsion and Power, 2006, 22(6): 1261-1268 10.2514/1.19624 [CrossRef] [Google Scholar]
  15. Li J, Lai W H, Chung K, et al. Uncertainty Analysis of Defl Agration-to-Detonation Run-up Distance[J]. Shock Wave, 2005, 14(5/6): 413-420 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.