Open Access
Volume 39, Number 1, February 2021
Page(s) 148 - 158
Published online 09 April 2021
  1. Koch P N, Simpson T W, Allen J K, et al. Statistical approximations for multidisciplinary design optimization: the problem of size[J]. Journal of Aircraft, 1999, 36(1):275–286 [Article] [Google Scholar]
  2. Han Z H, GÖRTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885–1896 [Article] [Google Scholar]
  3. Han Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197–3225 (in Chinese) [Google Scholar]
  4. Park J, Sandberg I W. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2):246–257 [Article] [Google Scholar]
  5. Schmit L A, Farshi B. Some approximation concepts for structural synthesis[J]. AIAA Journal, 1974, 12(5):692–699 [Article] [Google Scholar]
  6. Alexandrov N M, Lewis R M, Gumbert C R, et al. Optimization with variable-fidelity models applied to wing design[C]//38th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2000 [Google Scholar]
  7. Jiang P, Zhou Q, Shao X, et al. A modified blisco method and its combination with variable fidelity metamodel for engineering design[J]. Engineering Computations, 2016, 33(5):1353–1377 [Article] [Google Scholar]
  8. Chang K J, Haftka R T, Giles G L, et al. Sensitivity based scaling for approximating structural response[J]. Journal of Aircraft, 1993, 30(2):283–288 [Article] [Google Scholar]
  9. Alexandrov N M, Lewis R M, Gumbert C R, et al. Approximation and model management in aerodynamic optimization with variable-fidelity models[J]. Journal of Aircraft, 2001, 38(6):1093–1101 [Article] [Google Scholar]
  10. Gano S E, Renaud j e, Martin j d, et al. Update strategies for Kriging models used invariable fidelity optimization[J]. Structural and Multidisciplinary Optimization, 2006, 32(4):287298 [Article] [Google Scholar]
  11. Leifsson L, Koziel S B. Fast low-fidelity wing aerodynamics model for surrogate-based shape optimization[J]. Procedia Computer Science, 2014, 29: 811–820 [Article] [Google Scholar]
  12. Zhang Y, Han Z H, Zhang K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization 2018, 4(58):1431–1451 [Article] [Google Scholar]
  13. Song C, Yang X, Song W. Multi-infill strategy for Kriging models used in variable fidelity optimization[J]. Chinese Journal of Aeronautics, 2018, 31(3):448–456 [Article] [Google Scholar]
  14. Han Z H, Xu C Z, Zhang L. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2019, 33(1):31–47 [Article] [Google Scholar]
  15. Leifsson L, Koziel S. Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: a review of recent progress[J]. Joural of Computational Science, 2015, 10: 45–54 [Article] [Google Scholar]
  16. Mifsud M J, Macmanus D G, Shaw S T. A variable-fidelity aerodynamic model using proper orthogonal decomposition[J]. International Journal for Numerical Methods in Fluids, 2016, 82(10):646–663 [Article] [Google Scholar]
  17. Laurenceau J, Sagaut P. Building efficient response surfaces of aerodynamic functions with kriging and cokriging[J]. AIAA Journal, 2008, 46(2):498–507 [Article] [Google Scholar]
  18. Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455–492 [Article] [Google Scholar]
  19. MA Yang. Research on the aerodynamic shape optimization of vehicle based on surrogate model and MOEA/D[D]. Changsha: National University of Defense Technology, 2015 (in Chinese) [Google Scholar]
  20. Cook P H, Mcdonald M A, Firmin M C P. Aerofoil RAE 2822-pressure distributions, and boundary layer and wake measurements[R]. AGARD Report AR 138, 1979 [Google Scholar]
  21. Giunta A A, Wojtkiewicz S F, Eldred M S. Overview of modern design of experiments methods for computational simulations[C]//41st AIAA Aerospace Sciences Meeting and Exhibit, 2003 [Google Scholar]
  22. Kulfan B, Bussoletti J. "Fundamental" parameteric geometry representations for aircraft component shapes[C]//11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006 [Google Scholar]
  23. Iuliano Emiliano. Global optimization of benchmark aerodynamic cases using physics-based surrogate models[J]. Aerospace Science and Technology, 2017, 67: 273–286 [Article] [Google Scholar]
  24. Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50–79 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.