Open Access
Issue
JNWPU
Volume 39, Number 2, April 2021
Page(s) 367 - 374
DOI https://doi.org/10.1051/jnwpu/20213920367
Published online 09 June 2021
  1. Gupta L, Jain R, Vaszkun G, et al. Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys and Tutorials, 2016, 18(2):1123–1152 [Article] [Google Scholar]
  2. Wang S, Liu H, Gomes P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks[J]. IEEE Trans on Cognitive Communications and Networking, 2018, 4(2):257–265 [Article] [Google Scholar]
  3. Wu Y, Wang B, Liu K. Anti-jamming games in multi-channel cognitive radio networks[J]. IEEE Journal of Selected Areas in Communications, 2012, 30(1):4–15 [Article] [Google Scholar]
  4. Chen C, Song M, Xin C, et al. A game-theoretical anti-jamming scheme for cognitive radio networks[J]. IEEE Network, 2013, 27(3):22–27 [Article] [Google Scholar]
  5. Xiao L, Chen T, Liu J, et al. Anti-jamming transmission Stackelberg game with observation errors[J]. IEEE Communications Letters, 2015, 19(6):949–952 [Article] [Google Scholar]
  6. Ahmedi K, Fapojuwo A O. Stackelberg equilibria of an anti-jamming game in cooperative cognitive radio networks[J]. IEEE Trans on Cognitive Communications and Networking, 2018, 4(1):121–134 [Article] [Google Scholar]
  7. Altman E, Avrachenkov K, Garnaev A. A jamming game in wireless networks with transmission cost[C]//International Conferene on Network Control and Optimization, 2007 [Google Scholar]
  8. Yang D, Zhang J, Fang X, et al. Optimal transmission power control in the presence of a smart jammer[C]//IEEE Global Communications Conference, 2012 [Google Scholar]
  9. Hanawal M K, Abdelrahman M J, Krunz M, et al. Joint adaptation of frequency hopping and transmission rate for anti-jamming wireless systems[J]. IEEE Trans on Mobile Computing, 2016, 15(9):2247–2259 [Article] [Google Scholar]
  10. Hanawal M K, Abdelrahman M J, Krunz M, et al. Game theoretic anti-jamming dynamic frequency hopping and rate adaptation in wireless systems[C]// Modeling and Optimization in Mobile, Adhoc and Wireless Networks, 2014 [Google Scholar]
  11. Han G, Xiao L, Poor H V. Two-dimensional anti-jamming communication based on deep reinforcement learning[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2017 [Google Scholar]
  12. Jin H, Song X, Wang M, et al. A fast anti-jamming decision method based on the rule-reduced genetic algorithm[J]. KSII Trans on Internet and Information Systems, 2016, 10(9):4549–4567 [Article] [Google Scholar]
  13. Wu Q, Xu Y, Wang J, et al. Distributed channel selection in time-varying radio environment: interference mitigation game with uncoupled stochastic learning[J]. IEEE Trans on vehicular technology, 2013, 62(9):4524–4538 [Article] [Google Scholar]
  14. Chen L, Iellamo S, Coupechoux M, et al. Opportunistic spectrum access with channel switching cost for cognitive radio networks[C]//International Conference on Communications, 2011: 1–5 [Google Scholar]
  15. Zhu Jiang, Chen Hongcui, Xiong Jiahao. Channel selection baseed on multi-armeed slot machine moedel[J]. Telecommunications Technology, 2015, 55(10):1094–1100 [Article] [Google Scholar]
  16. Du Z, Wu Q, Yang P, et al. Learning with handoff cost constraint for network selection in heterogeneous wireless networks[C]//Communications and Mobile Computing, 2016, 16(4): 441–458 [Google Scholar]
  17. Auer P, Cesabianchi N, Fischer P, et al. Finite-time analysis of the multiarmed bandit problem[J]. Machine Learning, 2002, 47(2):235–256 [Article] [Google Scholar]
  18. Qin Z, Wang J, Chen J, et al. Opportunistic channel access with repetition time diversity and switching cost: a block multi-armed bandit approach[J]. Wireless Networks, 2018, 24(5):1683–1697 [Article] [Google Scholar]
  19. Yang D, Xue G, Zhang J, et al. Coping with a smart jammerin wireless networks: a Stackelberg game approach[J]. IEEE Trans on Wireless Communications, 2013, 12(8):4038–4047 [Article] [Google Scholar]
  20. Xiao L, Chen T, Liu J, et al. Anti-jamming transmission stackelberg game with observation errors[J]. IEEE Communications Letters, 2015, 19(6):949–952 [Article] [Google Scholar]
  21. Boyd S, Vandenberghe L. Convex optimization, Cambridge: Cambridge University Press, 2004 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.