Open Access
Issue
JNWPU
Volume 39, Number 2, April 2021
Page(s) 430 - 438
DOI https://doi.org/10.1051/jnwpu/20213920430
Published online 09 June 2021
  1. Liu Wenjie, Li Jianbo, Li Zhanhuai, et al. A massire distribnted relational database for financial application[J]. Journal of Huazhong University, 2019, 47(2): 121–126 (in Chinese) [Google Scholar]
  2. Darko Makreshanski, Jana Giceva, Claude Barthels, et al. BatchDB: efficient isolated execution of hybrid OLTP+OLAP workloads for interactive applications[C]//Proceedings of the 2017 ACM International Conference on Management of Data, New York, 2017 [Google Scholar]
  3. Sadoghi M, Bhattacherjee S, Bhattacharjee B, et al. L-store: a real-time OLTP and OLAP system[C]//Proceedings of the 21st International Confcrence on Extendirg Database Technology, 2018 [Google Scholar]
  4. Zhang K, Sadoghi M, Jacobsen H. DL-store: a distributed hybrid OLTP and OLAP data processing engine[C]//IEEE 36th International Conference on Distributed Computing Systems, 2016: 769–770 [Google Scholar]
  5. Ronald Barber, Vijayshankar Raman, Richard Sidlc, et al. Wildfire: HTAP for big data[M]. Encyclopedia of Big Data Technologies, 2019 [Google Scholar]
  6. Boissier M, Schlosser R, Uflacker M. Hybrid data layouts for tiered HTAP databases with pareto-optimal data placements[C]//IEEE 34th International Conference on Data Engineering, 2018 [Google Scholar]
  7. Chaalal Hichem, Travers Nicolas, Belbachir Hafida. T-plotter: a new data structure to reconcile OLAP and OLTP Models[J]. Multiagent and Grid Systems, 2019, 1: 237[J]–257 [Article] [Google Scholar]
  8. Hedjazi M A, Kourbane I, Genc Y, et al. A comparison of hadoop, spark and storm for the task of large scale image classification[C]//2018 26th Signal Processing and Communications Applications Conference, Izmir, 2018 [Google Scholar]
  9. Markl V. Mosaics: stratosphere, flink and beyond[C]//IEEE International Conference on Data Engineering, 2017 [Google Scholar]
  10. Kamil Jerábek, Ondrej Rysary. Big data network flow processing using apache spark[C]//Proceedings of the 6th Conference on the Engineering of Computer Based Systems, 2019 [Google Scholar]
  11. Chintapalli S, Dagit D, Evans B, et al. Benchmarking streaming computation engines: storm, flink and spark streaming[C]//IEEE International Parallel & Distributed Processing Symposium Workshops, 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.