Open Access
Volume 39, Number 4, August 2021
Page(s) 776 - 785
Published online 23 September 2021
  1. Smith D M, Felderman E. Aerothermal testing of space and missile materials in the Arnold engineering development center arc jet facilities[C]//AIAA Aerodynamic Measurement Technology & Ground Testing Conference, 2013 [Google Scholar]
  2. Driver D M, Carballo J E, Beck R, et al. Arcjet testing in shear environment for mars science laboratory thermal protection system[C]//AIAA Thermophysics Conference, 2014 [Google Scholar]
  3. Sheeley J, Felderman J. Potential for mach 8 to 12 air-breathing engine testing in an arc-heated facility[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2013 [Google Scholar]
  4. Wei Bruce, Horn D D, Felderman E J, et al. Arc heater development at AEDC[C]//18th AIAA Aerospace Ground Testing Conference, 1994 [Google Scholar]
  5. Smith R, Wagner D, Cunningham J, et al. A survey of current and future plasma arc-heated test facilities for aerospace and commercial applications[C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998 [Google Scholar]
  6. Winovich W, Balboni J, Balakrishnan A. Experimental and analytical derivation of arc-heater scaling laws for simulating high-enthalpy environments for aeroassisted orbital transfer vehicle application[C]//AIAA 20th Thermophysics Conference, 2013 [Google Scholar]
  7. Balboni J A, Gokcen T, Hui F C L, et al. Consolidating NASA's arc jets[C]//45th AIAA Thermophysics Conference, 2015 [Google Scholar]
  8. Balboni J, Atler D. Development and operation of new arc heater technology for a large-scale scramjet propulsion test facility[C]//AIAA 28th Thermophysics Conference, 1993 [Google Scholar]
  9. Folck J L, Smith R T. Calibration of the AFFDL 50 megawatt arc heated hypersonic wind tunnel with a two-foot nozzle[R]. AFFDL-TR-69-36, 1969 [Google Scholar]
  10. Richard T S, James L F. Operating characteristics of a multi-megawatt arc heater used with the air force flight dynamics laboratory 50-megawatt facility[R]. AFFDL-TR-69-6, 1969 [Google Scholar]
  11. Hammock G L. Expansion of the AEDC H2 arc heater facility test envelope using cold-air mixing[C]//33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2017 [Google Scholar]
  12. Dubreus T, Sheeley J, Stewart J. Development of a mid-pressure arc-heated facility for hypersonic vehicle testing[C]//US Air Force T&E Days, 2013 [Google Scholar]
  13. Votta MMFDFMDV R, Sabatano R. Design and feasibility of exomars supersonic parachute scirocco test[J]. Journal of Spacecraft & Rockets, 2010, 47(6): 981–993 [NASA ADS] [CrossRef] [Google Scholar]
  14. Anfimov N. Tsniimash capabilities for aerogasdynamical and thermal testing of hypersonic vehicles[C]//Joint Propulsion Conference & Exhibit, 1992 [Google Scholar]
  15. 中国空气动力研究与发展中心. 大功率电弧风洞(FD-15A、FD-15B)(2015-09-21)[2021-07-05] [Google Scholar]
  16. Horn D W, Bruce I, Felderman E. Results and predictions for the new H3 arc heater at AEDC[C]//Plasma Dynamics & Lasers Conference, 2013 [Google Scholar]
  17. Laub B. Use of arc-jet facilities in the design and development of thermal protection systems[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2006 [Google Scholar]
  18. Sheeley J, Whittingham K, Montgomery P, et al. Extending arc heater operating pressure range for improved reentry simulation[C]//AIAA Aerodynamic Measurement Technology & Ground Testing Conference, 2013 [Google Scholar]
  19. Durgapal P. Radiative transfer in the electrode region of an arc heater[C]//AIAA 27th Thermophysics Conferencee, 1992 [Google Scholar]
  20. Durgapal P. Study of high temperature and high current arcs in the cathode region of an arc heater[C]//30th Aerospace Sciences Meeting, 1992 [Google Scholar]
  21. Winovich W. On the equilibrium sonic-flow method for evaluating electric arc heater performance[R]. NASA TN D2132, 1964 [Google Scholar]
  22. Shaeffer J F. Swirl arc: a model for swirling, turbulent, radiative arc heater flowfields[J]. AIAA Journal, 2015, 16(10): 1068–1075 [Article] [Google Scholar]
  23. Macdermott W, Felderman E, et al. Arc heater scaling parameters predicted with the swirlarc code[C]//28th AIAA Thermophysics Conference, 1993 [Google Scholar]
  24. Nicolet W E, Shepard C E, Clark K J, et al. Analytical and design study for a high-pressure, high-enthalpy constricted arc heater[R]. Acurex Corporation Mountain View, TR-75-47, 1975 [Google Scholar]
  25. Milos Frank S. Flowfield analysis for high-enthalpy arc heaters[J]. Journal of Thermophysics & Heat Transfer, 1992, 6(3): 565–568 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  26. Kim M, Ali G, Esser B, et al., editors. Numerical and experimental study of high enthalpy flows in a hypersonic plasma wind tunnel: L3K[C]//42nd AIAA Thermophysics Conference, 2011 [Google Scholar]
  27. Felderman E, Chapman R, Jacocks J, et al. Development of a high pressure, high power arc heater-modeling requirements and status[C]//Plasmadynamics & Lasers Conference, 2013 [Google Scholar]
  28. Takeharu Sakai. Computational simulation of high enthalpy arc heater flows[J]. Journal of Thermophysics & Heat Transfer, 2007, 21(1): 77–85 [Article] [Google Scholar]
  29. Ding L, Zeng X, Merkle C, et al. Coupled fluid-dynamic electromagnetic modeling of arc heaters[C]//AIAA Plasmadynamics & Lasers Conference, 2006 [Google Scholar]
  30. Lee J I, Herdrich G, Jeong G, et al. Numerical parameter study of low-electric-power segmented arc heaters[J]//Journal of Thermophysics & Heat Transfer, 2012, 26(2): 271–285 [Google Scholar]
  31. Meurisse J, Alvarez Laguna A, Mansour N, et al. 3D unsteady model of arc heater plasma flow using the arc heater simulator(arches)[C]//71st Annual Gaseous Electronics Conference, 2018 [Google Scholar]
  32. Donald R B, James P C, Simon P C. Performance of multiple-chambers arc heater with four magnetically spun direct-current arcs[R]. NASA TN D-2891, 1965 [Google Scholar]
  33. Horn D D, Bruce W E, Felderman E J, et al. Arc heater manifold evaluation[R]. AEDC, TR-95-28, 1996 [Google Scholar]
  34. Felderman E J, Macdermott W N, Fisher J C. Near-electrode model at high pressure (100 atm)[C]//6th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 1994 [Google Scholar]
  35. Horn D, Felderman E, Macdermott W, et al. Analysis and results of external magnetic fields applied to high-pressure dc electric arc heaters[C]//Joint Thermophysics & Heat Transfer Conference, 1994 [Google Scholar]
  36. Painter J H. High-performance arc air heater studies[C]//AIAA 10th Thermophysics Conference, 1975 [Google Scholar]
  37. Benilov M S. Understanding and modelling plasma-electrode interaction in high-pressure arc discharges: a review[J]. Journal of Physics D: Applied Physics, 2008, 41(14): 144001 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  38. Puchkarev V F, Murzakayev A M. Current density and the cathode spot lifetime in a vacuum arc at threshold currents[J]. Journal of Physics D: Applied Physics, 1990, 23(1): 26–35 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  39. Sharakhovsky L I, Marotta A, Borisyuk V N. A theoretical and experimental investigation of copper electrode erosion in electric arc heaters: II. the experimental determination of arc spot parameters[J]. Journal of Physics D: Applied Physics, 1997, 30(14): 2018–2025 [Article] [CrossRef] [Google Scholar]
  40. Durgapal P. Study of high temperature and high current arcs in thecathode region of an arc heater[C]//30th Aerospace Sciences Meeting & Exihit, 1992 [Google Scholar]
  41. Arustamov V N, Ashurov K B, Kadirov K K, et al. Structure and parameters of vacuum arc cathode spots[J]. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78(6): 558–562 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  42. Casto A. Contribution to the study of the electric arc erosion of metallic electrodes[R]. NASA TM-77855, 1985 [Google Scholar]
  43. Sheeley Joseph M. The effect of applied magnetic field on arc spin rate in high pressure arc heaters[C]//53rd AIAA Aerospace Sciences Meeting, 2015 [Google Scholar]
  44. Rudolf C T, Sheeley J M, Scott W M. Design, fabrication, and testing of a B-dot probe in arc heaters[C]//55th AIAA Aerospace Sciences Meeting, 2017 [Google Scholar]
  45. Essiptchouk A M, Marotta A, Sharakhovsky L I. The effect of arc velocity on cold electrode erosion[J]. Physics of Plasmas, 2004, 11(3): 1214–1219 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  46. Milos F S, Shepard C E. Thermal analysis of an arc heater electrode with a rotating arc foot[J]. Journal of Thermophysics & Heat Transfer, 1993, 8(4): 723–729 [Article] [Google Scholar]
  47. Marotta A, Sharakhovsky L I. A theoretical and experimental investigation of copper electrode erosion in electric arc heaters: I the thermophysical model[J]. Journal of Physics D: Applied Physics, 1996, 29(9): 2395–2403 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  48. Felderman E, Dermott W. Near-electrode model with nonequilibrium ionization (at 100 atm)[C]//Plasmadynamics & Lasers Conference, 1995 [Google Scholar]
  49. Webb B T, Sheeley J M. Investigation of the effects of shear on arc-electrode erosion using a modified arc-electrode mass loss model[C]//55th AIAA Aerospace Sciences Meeting, 2017 [Google Scholar]
  50. Jochen R, Alexander F, Gerhard S, et al. Oxidation damage of spark plug electrodes[J]. Advanced Engineering Materials, 2010, 7(7): 633–640 [Article] [Google Scholar]
  51. Harris W J. A study of cathode erosion in high power arcjets[D]. Texas: Texas Tech University, 2002 [Google Scholar]
  52. Yuan J, Long Y, Zhu T, et al. Copper cathode’s ablated structure operated in a 50 megawatt arc heater[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(4): 1055–1064 [Article] [CrossRef] [Google Scholar]
  53. Yuan J, Liu Y, Zhu T, et al. Cu-Y, Cu-La and Cu-Ba alloys’ microstructure and ablation behavior discharging in air and SF6[J]. Vacuum, 2020, 173: 109163 [Article] [CrossRef] [Google Scholar]
  54. Valerian Nemchinsky. Heat transfer to a cathode of a rotating arc[J]. Plasma Sources Science & Technology, 2015, 24(3): 035013 [NASA ADS] [CrossRef] [Google Scholar]
  55. Shope F L. Conceptual thermal design of a 200 atm, water cooled arc heater nozzle[C]//AIAA 28th Thermophysics Conference, 1993 [Google Scholar]
  56. Kim S. Development of tunable diode laser absorption sensors for a large-scale arc-heated-plasma wind tunnel[D]. Stanford: Stanford University, 2004 [Google Scholar]
  57. Zeng Hui, Chen Zhiming, Yan Xianxiang, et al. Quantitative measurements of copper contamination in arc heater by using emission spectroscopy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 12351 [Article] (in Chinese) [Google Scholar]
  58. Lin Xin, Zeng Hui, Peng Jinlong, et al. Atomic emission spectroscopy diagnostics for leak detection of cooling water in a low-enthalpy arc heater[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 81–86 [Article] (in Chinese) [Google Scholar]
  59. Zheng Qionglin. Study on High power converter for arc heater applications[J]. Power Electronics, 2009, 43(10): 189–194 [Article] (in Chinese) [Google Scholar]
  60. Guo Wenjie. Power supply system of high-voltage, high-power arc heater for reentry environment simulation[D]. Beijing: Beijing Jiaotong University, 2008 (in Chinese) [Google Scholar]
  61. Painter J H. High pressure arc heater electrode heat transfer study[J]. AIAA Journal, 2015, 13(12): 1555–1556 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.