Open Access
Volume 40, Number 5, October 2022
Page(s) 1021 - 1029
Published online 28 November 2022
  1. QIN Yongyuan. Inertial Navigation[M]. 2nd ed. Beijing: Science Press, 2014 (in Chinese) [Google Scholar]
  2. YAN Gongmin, WENG Jun. The strapdown inertial naugation algorithm and intergrated nauigotion theory[M]. Xi'an: Northwestern Polytechnical University, Press, 2019(in Chinese) [Google Scholar]
  3. BORTZ J E. A new mathematical formulation for strapdown inertial navigation[J]. IEEE Trans on Aerospace Electronic Systems, 1971, AES-7(1): 61–66 [Article] [CrossRef] [Google Scholar]
  4. MILLER R B. A new strapdown attitude algorithm[J]. Journal of Guidance Control and Dynamics, 1983, 6(4): 287–291 [Article] [CrossRef] [Google Scholar]
  5. IGNAGNI M B. Optimal strapdown attitude integration algorithms[J]. Journal of Guidance Control and Dynamics, 1990, 13(2): 363–369 [Article] [CrossRef] [Google Scholar]
  6. IGNAGNI M B. Efficient class of optimized coning compensation algorithms[J]. Journal of Guidance Control and Dynamics, 1996, 19(2): 424–429 [Article] [CrossRef] [Google Scholar]
  7. SONG Min. Research on error analysis and optimization methods for strapdown inertial navigation algorithm under highly dynamic environment[D]. Changsha: National University of Defense Technology, 2012(in Chinese) [Google Scholar]
  8. WANG M S, WU W Q, WANG J L, et al. High-order attitude compensation in coning and rotation coexisting environment[J]. IEEE Trans on Aerospace and Electronic Systems, 2015, 51(2): 1178–1190 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. WANG M S, WU W Q, HE X F, et al. Higher-order rotation vector attitude updating algorithm[J]. Journal of Navigation, 2019, 72(3): 721–740 [Article] [CrossRef] [Google Scholar]
  10. YAN Gongmin, WENG Jun, YANG Xiaokang, et al. An accurate numerical solution for strapdown attitude algorithm based on Picard iteration[J]. Journal of Astronautics, 2017, 38(12): 1307–1313 [Article] (in Chinese) [Google Scholar]
  11. WU Y XYAN G M. Attitude reconstruction from inertial measurements: QuatFIter and its comparison with RodFIter[J]. IEEE Trans on Aerospace and Electronic Systems, 2019, 55(6): 3629–3639 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  12. WU Y X. RodFIter: attitude reconstruction from inertial measurement by functional iteration[J]. IEEE Trans on Aerospace and Electronic Systems, 2018, 54(5): 2131–2142 [Article] [CrossRef] [Google Scholar]
  13. YANG C, YAO F, ZHANG M, et al. Adaptive sliding mode pid control for underwater manipulator based on legendre polynomial function approximation and its experimental evaluation[J]. Applied Sciences, 2020, 10(5): 1728[Article] [CrossRef] [Google Scholar]
  14. SINGH A K, MEHRA M. Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations[J]. Journal of Computational Science, 2021, 51: 101342[Article] [CrossRef] [Google Scholar]
  15. PIRETZIDIS DSIDERIS M G. Analytical expressions and recurrence relations for the Pn-1(t)-Pn+1(t) function, derivative and integral[J]. Journal of Geodesy, 2021, 95(6): 1–12 [NASA ADS] [CrossRef] [Google Scholar]
  16. ZIRKOHI M M. Direct adaptive function approximation techniques based control of robot manipulators[J]. Journal of Dynamic Systems, Measurement and Control, 2018, 140(1): 011006 [Article] [CrossRef] [Google Scholar]
  17. KHORASHADIZADEH S, FATEH M M. Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation[J]. Nonlinear Dynamics, 2015, 79(2): 1151–1161 [Article] [CrossRef] [Google Scholar]
  18. YAN Gongmin, Yang Xiaokang, Weng Jun, et al. A general method to obtain noncommutativity error compensation coefficients for strapdown attitude algorithm[J]. Journal of Astronautics, 2017, 38(7): 723–727 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.