Open Access
Issue
JNWPU
Volume 40, Number 5, October 2022
Page(s) 980 - 989
DOI https://doi.org/10.1051/jnwpu/20224050980
Published online 28 November 2022
  1. ARSON C. Generalized stress variables in continuum damage mechanics[J]. Mechanics Research Communications, 2014, 60: 81–84 [Article] [CrossRef] [Google Scholar]
  2. ZHAN Z, HU W, LI B, et al. Continuum damage mechanics combined with the extended finite element method for the total life prediction of a metallic component[J]. International Journal of Mechanical Sciences, 2017, 124/125: 48–58 [Article] [CrossRef] [Google Scholar]
  3. PANDEY V B, SAMANT S S, SINGH I V, et al. An improved methodology based on continuum damage mechanics and stress triaxiality to capture the constraint effect during fatigue crack propagation[J]. International Journal of Fatigue, 2020, 140: 105823[Article] [CrossRef] [Google Scholar]
  4. DAVEY K, DARVIZEH R, ZHANG J. Finite similitude in fracture mechanics[J]. Engineering Fracture Mechanics, 2021, 245: 107573[Article] [CrossRef] [Google Scholar]
  5. YUN K, WANG Z, RONALD S, et al. An advanced continuum damage mechanics model for predicting the crack progress process based on the consideration of the influence of crack direction under quasi-static load[J]. International Journal of Mechanical Sciences, 2017, 130: 487–496 [Article] [CrossRef] [Google Scholar]
  6. FRANCISCO E J, JOSÉ F. A novel continuum damage model to simulate quasi-brittle failure in mode I and mixed-mode conditions using a continuous or a continuous-discontinuous strategy[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102745[Article] [CrossRef] [Google Scholar]
  7. JIANG S, GU Y, FAN C M, et al. Fracture mechanics analysis of bimaterial interface cracks using the generalized finite difference method[J]. Theoretical and Applied Fracture Mechanics, 2021, 113: 102942[Article] [CrossRef] [Google Scholar]
  8. KRUEGER R. Virtual crack closure technique: history, approach, and applications[J]. Applied Mechanics Reviews, 2004, 57(1): 109–143 [CrossRef] [Google Scholar]
  9. MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150 [Article] [CrossRef] [Google Scholar]
  10. BOBARU F, FOSTER J T, GEUBELLE P H, et al. Handbook of Peridynamic Modeling[M]. Boca Raton: CRC Press, 2016 [CrossRef] [Google Scholar]
  11. MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically-consistent phase field models of fracture: variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83: 1273–1311 [Article] [CrossRef] [Google Scholar]
  12. SILLING S, EPTON M, WECKNERO O, et al. Peridynamics states and constitutive modeling[J]. Journal of Elasticity, 2007, 88: 151–184 [Article] [CrossRef] [Google Scholar]
  13. SILLING S. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 175–209 [Article] [CrossRef] [Google Scholar]
  14. AMBATI M, GERASIMOV T, LORENZIS L D. A review on phase-field models of brittle fractureand a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55: 383–405 [Article] [CrossRef] [Google Scholar]
  15. TEICHTMEISTER S, KIENLE D, ALDAKHEEL F, et al. Phase field modeling of fracture in anisotropic brittle solids[J]. International Journal of Non-Linear Mechanics, 2017, 97: 1–21 [Article] [CrossRef] [Google Scholar]
  16. HAKIM V, KARMA A. Laws of crack motion and phase-field models of fracture[J]. Journal of the Mechanics and Physics of Solids, 2009, 57: 342–368 [Article] [CrossRef] [Google Scholar]
  17. PONS A J, KARMA A. Helical crack-front instability in mixed-mode fracture[J]. Nature, 2010, 464(7285): 85–89 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. BOURDIN B, FRANCFORT G, MARIGO J J. The variational approach to fracture[M]. Berlin: Springer Science+Business Media, 2008 [CrossRef] [Google Scholar]
  19. FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46: 1319–1342 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  20. BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 797–826 [Article] [CrossRef] [Google Scholar]
  21. MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Method in Applied Mechanics and Engineering, 2010, 199: 2765–2778 [Article] [CrossRef] [Google Scholar]
  22. CHEN Y, VASIUKOV D, GÉLÉBART L, et al. A FFT solver for variational phase-field modeling of brittle fracture[J]. Computer Method in Applied Mechanics and Engineering, 2019, 349: 167–190 [Article] [CrossRef] [Google Scholar]
  23. HIRSHIKESH, PRAMOD A L N, ANNABATTULA R K, et al. Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method[J]. Computer Method in Applied Mechanics and Engineering, 2019, 355: 284–307 [Article] [CrossRef] [Google Scholar]
  24. MIEHE C, HOFACKER M, SCHÄNZEL LM, et al. Phase field modeling of fracture in multi-physics problems. Part Ⅱ. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[J]. Computer Method in Applied Mechanics and Engineering, 2015, 294: 486–522 [Article] [CrossRef] [Google Scholar]
  25. BORDEN M J, HUGHES T J, LANDIS C M, et al. A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects[J]. Computer Method in Applied Mechanics and Engineering, 2016, 312: 130–166 [Article] [CrossRef] [Google Scholar]
  26. BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture[J]. Computer Method in Applied Mechanics and Engineering, 2012, 217/218/219/220: 77–95 [CrossRef] [Google Scholar]
  27. REN H, ZHUANG X, ANITESCU C, et al. An explicit phase field method for brittle dynamic fracture[J]. Computers and Structures, 2019, 217: 45–56 [Article] [CrossRef] [Google Scholar]
  28. PAGGI M, REINOSO J. Revisiting the problem of a crack impinging on an interface: a modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model[J]. Computer Method in Applied Mechanics and Engineering, 2017, 321: 145–172 [Article] [CrossRef] [Google Scholar]
  29. MANDAL T K, NGUYEN V P, WU J Y. Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture[J]. Engineering Fracture Mechanics, 2019, 217: 106532[Article] [CrossRef] [Google Scholar]
  30. MESGARNEJAD A, IMANIAN A, KARMA A. Phase-field models for fatigue crack growth[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102282[Article] [CrossRef] [Google Scholar]
  31. LO Y S, BORDEN M J, RAVI-CHANDAR K, et al. A phase-field model for fatigue crack growth[J]. Journal of the Mechanics and Physics of Solids, 2019, 132: 103684[Article] [CrossRef] [Google Scholar]
  32. BRYANT E C, SUN W C. A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics[J]. Computer Method in Applied Mechanics and Engineering, 2018, 342: 561–584 [Article] [CrossRef] [Google Scholar]
  33. ZHOU S, ZHUANG X, RABCZUK T. Phase field modeling of brittle compressive-shear fractures in rock-like materials: a new driving force and a hybrid formulation[J]. Computer Method in Applied Mechanics and Engineering, 2019, 355: 729–752 [Article] [CrossRef] [Google Scholar]
  34. XIE Y, KRAVCHENKO OG, PIPES RB, et al. Phase field modeling of damage in glassy polymers[J]. Journal of the Mechanics and Physics of Solids, 2016, 93: 182–197 [Article] [CrossRef] [Google Scholar]
  35. TALAMINI B, MAO Y, ANAND L. Progressive damage and rupture in polymers[J]. Journal of the Mechanics and Physics of Solids, 2018, 111: 434–457 [Article] [CrossRef] [Google Scholar]
  36. FENG D C, WU J Y. Phase-field regularized cohesive zone model (CZM) and size effect of concrete[J]. Engineering Fracture Mechanics, 2018, 197: 66–79 [Article] [CrossRef] [Google Scholar]
  37. YANG Z J, LI B B, WU J Y. X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete[J]. Engineering Fracture Mechanics, 2019, 208: 151–170 [Article] [CrossRef] [Google Scholar]
  38. ESPADAS E J J, DIJK N P V, ISAKSSON P. A phase-field model for strength and fracture analyses of fiber-reinforced composites[J]. Composites Science and Technology, 2019, 174: 58–67 [Article] [CrossRef] [Google Scholar]
  39. QUINTANAS C A, REINOSO J, CASONIC E, et al. A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials[J]. Composite Structures, 2019, 220: 899–911 [Article] [CrossRef] [Google Scholar]
  40. LIU G, LI Q, MSEKH M A, et al. Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model[J]. Computational Materials Science, 2016, 121: 35–47 [Article] [CrossRef] [Google Scholar]
  41. KUHN C, SCHLVTER A, MVLLER R. On degradation functions in phase field fracture models[J]. Computational Materials Science, 2015, 108: 374–384 [Article] [CrossRef] [Google Scholar]
  42. GEORGE Z V, NAVID M. Nonlocal damage model using the phase field method: theory and applications[J]. International Journal of Solids and Structures, 2013, 50: 3136–3151 [Article] [CrossRef] [Google Scholar]
  43. WU J Y, HUANG Y, NGUYEN P V. On the BFGS monolithic algorithm for the unified phase field damage theory[J]. Computer Method in Applied Mechanics and Engineering, 2020, 360: 112704[Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.