Open Access
Volume 41, Number 2, April 2023
Page(s) 344 - 353
Published online 07 June 2023
  1. LIUH, LIUC, HUANGY. Adaptive feature extraction using sparse coding for machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25: 558–574. [Article] [CrossRef] [Google Scholar]
  2. LIY, WANGX, LIUZ, et al. The entropy algorithm and its variants in the fault diagnosis of rotating machinery: a review[J]. IEEE Access, 2018, 6: 66723–66741. [Article] [Google Scholar]
  3. LIY, LIUF, WANGS. Multi-scale symbolic lempel-ziv: an effective feature extraction approach for fault diagnosis of railway vehicle systems[J]. IEEE Trans on Industrial Informatics, 2021, 17: 199–208. [Article] [Google Scholar]
  4. YANGC, JIAM. Hierarchical multiscale permutation entropy-based feature extraction and fuzzy support tensor machine with pinball loss for bearing fault identification[J]. Mechanical Systems and Signal Processing, 2021, 149: 107182. [Article] [CrossRef] [Google Scholar]
  5. WEIY, LIY, XUM, et al. A review of early fault diagnosis approaches and their applications in rotating machinery[J]. Entropy, 2019, 21(4): 409. [Article] [CrossRef] [Google Scholar]
  6. KOLMOGOROVA N. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces[J]. Doklady Akademii nauk SSSR, 1958, 119: 861–864 [Google Scholar]
  7. PINCUSS. Approximate entropy(ApEn) as a complexity measure[J]. Chaos, 1995, 5(1): 110–117. [Article] [Google Scholar]
  8. RICHMANJ, MOORMANJ. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278: H2039–49. [Article] [CrossRef] [Google Scholar]
  9. CHENW, ZHUANGJ, YUW, et al. Measuring complexity using FuzzyEn, ApEn, and SampEn[J]. Medical Engineering & Physics, 2009, 31(1): 61–68 [Google Scholar]
  10. CHRISTOPHB. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 17(88): 174102 [Google Scholar]
  11. LIY, YANGY, LIG, et al. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection[J]. Mechanical Systems and Signal Processing, 2017, 91: 295–312. [Article] [Google Scholar]
  12. COSTAM, GOLDBERGERA L, PENGC K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2007, 89: 068102 [Google Scholar]
  13. PAN S J, KWOK J T, YANG Q. Transfer learning via dimensionality reduction[C]//Proceedings of the 23rd National Conference on Artificial Intelligence, Chicago, Illinois, 2008 [Google Scholar]
  14. QUANZ B, HUAN J. Large margin transductive transfer learning[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, 2009 [Google Scholar]
  15. PANS J, TSANGI W, KWOKJ T, et al. Domain adaptation via transfer component analysis[J]. IEEE Trans on Neural Networks, 2011, 22(2): 199–210. [Article] [CrossRef] [Google Scholar]
  16. ZHENGH, WANGR, YINJ, et al. A new intelligent fault identification method based on transfer locality preserving projection for actual diagnosis scenario of rotating machinery[J]. Mechanical Systems and Signal Processing, 2020, 135: 106344. [Article] [CrossRef] [Google Scholar]
  17. PanS J, YangQ. A survey on transfer learning[J]. IEEE Trans on Knowledge and Data Engineering, 2010, 22(10): 1345–1359. [Article] [CrossRef] [Google Scholar]
  18. PHM Society. PHM 09 Data Challenge Data[EB/OL]. (2009-04-10)[2021-09-25]. [Article] [Google Scholar]
  19. CASE Western Reserve University. Case western reserve university rolling bearing dataset[EB/OL]. (2021-08-05)[2021-09-25]. [Article] [Google Scholar]
  20. Society for Machinery Failure Prevention Technology. Eric Bechhoefer, MFPT bearing fault data sets[EB/OL]. (2021-02-27)[2021-09-25]. [Article] [Google Scholar]
  21. GONG B, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012 [Google Scholar]
  22. LUW, LIANGB, CHENGY, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Trans on Industrial Electronics, 2016, 64(3): 2296–2305 [Google Scholar]
  23. ZHAOJ, MENGD. Fastmmd: ensemble of circular discrepancy for efficient two-sample test[J]. Neural Computation, 2015, 27(6): 1345–1372. [Article] [CrossRef] [Google Scholar]
  24. LONGM, WANGJ, DINGG, et al. Adaptation regularization: a general framework for transfer learning[J]. IEEE Trans on Knowledge and Data Engineering, 2013, 26(5): 1076–1089 [Google Scholar]
  25. VAN DER MAATENL, HINTONG. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579–2609 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.