Open Access
Issue
JNWPU
Volume 41, Number 5, Octobre 2023
Page(s) 942 - 949
DOI https://doi.org/10.1051/jnwpu/20234150942
Published online 11 December 2023
  1. LENG Jinsong, SUN Jian, LIU Yanju. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29–45 [Article] (in Chinese) [Google Scholar]
  2. WANG Binwen, YANG Yu, QIAN Zhansen, et al. Review of technical development of variable camber wing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 136–155. [Article] (in Chinese) [Google Scholar]
  3. BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823–877. [Article] [CrossRef] [Google Scholar]
  4. NI Yingge, YANG Yu. Research on the status and key technology in morphing airfoil of adaptive wings[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3): 297–308 [Article] (in Chinese) [Google Scholar]
  5. YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7): 271–278. [Article] [CrossRef] [Google Scholar]
  6. PECORA R. Multi-modal morphing wing flaps for next generation green regional aircraft: the cleansky challenge[C]//ASME Conference on Smart Materials, San Antonio, Texas, USA, 2018 [Google Scholar]
  7. BILGEN O, KOCHERSBERGER K B, INMAN D J, et al. Novel, bidirectional, variable camber airfoil via macro-fiber composite actuators[J]. Journal of Aircraft, 2010, 47(1): 303–314. [Article] [CrossRef] [Google Scholar]
  8. PARADIES R, CIRESA P. Active wing design with integrated flight control using piezoelectric macro fiber composites[J]. Smart Materials & Structures, 2009, 18(3): 035010 [CrossRef] [Google Scholar]
  9. VOS R, BREUKER R D, BARRETT R M, et al. Morphing wing flight control via postbuckled precompressed piezoelectric actuators[J]. Journal of Aircraft, 2007, 44(4): 1060–1068. [Article] [CrossRef] [Google Scholar]
  10. BILGEN O, BUTT L M, DAY S R, et al. A novel unmannedaircraft with solid-state control surfaces: analysis and flight demonstration[J]. Journal of Intelligent Material Systems & Structures, 2013, 24(2): 147–167 [CrossRef] [Google Scholar]
  11. LENG J S, LIU L W, LYU H B, et al. Applications of shape memory polymer composite structures in aerospace[J]. JEC Composites Magazine, 2012, 72: 36–38 [Google Scholar]
  12. CONCILIO A, DIMINO I, PECORA R. SARISTU: adaptive trailing ddge device (ATED) design process review[J]. Chinese Journal of Aeronautics, 2020, 34(7): 24 [Google Scholar]
  13. REA F, AMOROSO F, PECORA R, et al. Structural design of a multifunctional morphing fowler flap for a twin-prop regional aircraft[C]//ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2018 [Google Scholar]
  14. AMEDURI S, CONCILIO A, DIMINO I, et al. Airgreen2-Clean Sky 2 programme: adaptive wing technology maturation, challenges and perspectives[C]//ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2018 [Google Scholar]
  15. ZHAO Fei, GE Wenjie, ZHANG Long, et al. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8): 19–22. [Article] (in Chinese) [Google Scholar]
  16. YANG Zhichun, XIE Jiang. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1028–1034 [Article] (in Chinese) [Google Scholar]
  17. ZHANG Ping, ZHOU Li, QIU Tao. Mechanical property analysis and structural design of flexible skin based on deformable honedycomb[J]. Chinese Journal of Solid Mechanics, 2013, 34(5): 433–440. [Article] (in Chinese) [Google Scholar]
  18. ZHONG Min, ZHENG Sui, WANG Ganglin, et al. Correlation analysis of combined and separated effects of wing deformation and support system in the CAE-AVM study[J]. Chinese Journal of Aeronautics, 2018, 31(3): 429–438 [CrossRef] [Google Scholar]
  19. LI Chunpeng, ZHANG Tiejun, QIAN Zhansen. Aerodynamic optimization design of the airfoil with adaptive trailing edge based on surrogate model[J]. Aeronautical Science & Technology, 2019, 30(11): 41–47. [Article] (in Chinese) [Google Scholar]
  20. ARENA M, NAGEL C, PECORA R, et al. Static and dynamic performance of a morphing trailing edge concept with high-damping elastomeric skin[J]. Aerospace, 2019, 6(2): 22 [CrossRef] [Google Scholar]
  21. LI Lintao, LI Hailong, WANG Chong, et al. Calculation of rotation torque of servo motor driving ball screw[J]. Journal of Mechanical Engineer, 2014, 277(7): 214–215. [Article] (in Chinese) [Google Scholar]
  22. PECORA R, CONCILIO A, DIMINO I, et al. Structural design of an adaptive wing trailing edge for enhanced cruise performance[C]//Proceedings of the 24th AIAA/AHS Adaptive Structures Conference, 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.