Open Access
 Issue JNWPU Volume 42, Number 2, April 2024 222 - 231 https://doi.org/10.1051/jnwpu/20244220222 30 May 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1 考虑磨损演化的动力学建模方法

 图1考虑磨损演化的动力学建模方法

## 3 襟翼机构刚柔耦合动力学仿真

### 3.1 刚柔耦合动力学仿真

 图2某型飞机后缘襟翼结构图

 图3襟翼翼面的边界自由度
 图4襟翼翼面气动载荷

 图5滚珠丝杠转动速度
 图6未考虑磨损时的仿真结果

### 3.2 铰链轴承磨损演化仿真

 图7铰链轴承磨损演化仿真模型

 图8磨损前和磨损后轴承位移云图
 图9轴承17°处的磨损曲线
 图10磨损深度与偏转角度关系

### 3.3 基于最小二乘法的动力学模型更新

 图11考虑轴承非均匀磨损时的驱动力矩
 图12不同角度的内外轴承磨损深度差

## 4 结论

1) 基于UAMP子程序、DISP子程序和UMESHMOTION子程序实现了不规则载荷曲线的加载和往复循环运动的边界条件, 获取了轴承的非均匀磨损数据, 提供了一种复杂载荷条件下的轴承磨损预测方法;

2) 基于非线性和线性最小二乘法建立了磨损深度与偏转角度以及摩擦因数之间的映射关系, 并基于此实现了对襟翼刚柔耦合动力学模型的更新;

3) 随着铰链轴承的磨损襟翼内外侧轴承转轴同轴度逐渐降低, 内外侧驱动力矩随之增加, 增加幅度最大为15.08%, 设计时需要考虑轴承非均匀磨损带来的额外载荷。

## References

1. HOOGENDIJK A R. Knowledge engineering in high lift design: the ICAD flap kinematic tool[D]. Delft: Delft University of Technology, 2004 [Google Scholar]
2. ZACCAI D. Design framework for trailing edge high-lift systems: a knowledge based engineering application[D]. Delft: Delft University of Technology, 2014 [Google Scholar]
3. RECKSIEK M. Advanced high lift system architecture with distributed electrical flap actuation[C]//Aviation System Technology Workshop, 2009 [Google Scholar]
4. SCHOLZ P, MAHMOOD S, CASPER M, et al. Design of active flow control at a drooped spoiler configuration[R]. AIAA-2013-2518, 2013 [Google Scholar]
5. JIE Z, SUN Z, SONG Q. Analysis of flap mechanism reliability[C]//International Conference on Mechatronics Engineering & Information Technology, 2017 [Google Scholar]
6. ZHANG Lei, FENG Yunweng, XUE Xiaofeng, et al. Reliability analysis of straight track flap movement mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(7): 1189–1191 [Article] (in Chinese) [Google Scholar]
7. YU Tianxiang, ZHUANG Xinchen, SONG Bifeng, et al. Integrated wear life prediction method of multiple joints in an aircraft linkage mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 133–142 [Article] (in Chinese) [Google Scholar]
8. FENG Yunweng, HE Zhiyu, TANG Jiaqiang, et al. Dynamics simulation research on fault conditions of deflecting to airflow flap mechanism of civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2023, 14(4): 85–93 [Article] (in Chinese) [Google Scholar]
9. ZHONG Yunlong, ZHANG Zhongwen, ZHANG Dapeng, et al. Reliability simulation analysis of a flap motion mechanism based on failure modes[J]. Electronic Product Reliability and Environmental Testing, 2019, 37(5): 1–7 [Article] (in Chinese) [Google Scholar]
10. FENG Y W, HE Z Y, XUE X F, et al. Dynamic simulation of complex multi-hinge space flap mechanism[C]//The 12th Asia Conference on Mechanical and Aerospace Engineering, 2022 [Google Scholar]
11. ZHOU J, SUN Z, SONG Q. Analysis of flap mechanism reliability[C]//Proceedings of the 2nd International Conference on Mechatronics Engineering and Information Technology, 2017 [Google Scholar]
12. MUKRAS S, KIM N H, MAUNTLER N A, et al. Analysis of planar multibody systems with revolute jointwear[J]. Wear, 2010, 268(5/6): 643–652 [CrossRef] [Google Scholar]
13. GENG X Y, LI M, LIU Y F, et al. Non-probabilistic kinematic reliability analysis of planar mechanisms with non-uniform revolute clearance joints[J]. Mechanism and Machine Theory, 2019, 140: 413–433 [Article] [CrossRef] [Google Scholar]
14. ZHU Aibin, HE Shengli, ZOU Chao, et al. Dynamic wear analysis of clearance joint considering contact stiffness[J]. Journal of Xi'an Jiaotong University, 2016, 50(5): 12–18 [Article] (in Chinese) [Google Scholar]
15. LAI X M, HE H, LAI Q F, et al. Computational prediction and experimental validation of revolute joint clearance wear in the low-velocity planar mechanism[J]. Mechanical Systems and Signal Processing, 2017, 85: 963–976 [Article] [CrossRef] [Google Scholar]
16. FANG Xin. Conformal contact model and wear life prediction for spherical plain bearings[D]. Changsha: National University of Defense Technology, 2014: 14–31 (in Chinese) [Google Scholar]
17. LIU Yao. A new microcontact model of conformal contact and wear life prediction for spherical plain bearings based on fractal theory[D]. Changsha: National University of Defense Technology, 2016: 26–45 (in Chinese) [Google Scholar]
18. YUAN Junya, YANG Mingming, LI Peilong, et al. Progress research on the tribology of fabric liner for self-lubricating joint bearings[J]. Tribology, 2021, 41(2): 280–292 [Article] (in Chinese) [Google Scholar]
19. ZHANG Qinglin. Simulation of vehicle dynamics and optimization of suspension parameters based on rigid-flexible coupling model[D]. Chongqing: Chongqing University of Technology, 2015 (in Chinese) [Google Scholar]
20. LIANG Li, JI Xiaofei, MENG Zhaokang, et al. Optimization of landing gear door based on rigid-flexible coupling dynamic simulation[J]. Composites Science and Engineering, 2021(6): 45–51 [Article] (in Chinese) [Google Scholar]
21. FLORES P. Modeling and simulation of wear in revolute clearance joints in multibody systems[J]. Mechanism and Machine Theory, 2009, 44(6): 1211–1222 [CrossRef] [Google Scholar]
22. WANG G X, LIU H Z. Dynamic analysis and wear prediction of planar five-bar mechanism considering multi-flexible links and multi-clearance joints[J]. Journal of Tribology, 2017, 139(5): 051606 [CrossRef] [Google Scholar]
23. ZHU A B, HE S L, ZOU C, et al. The effect analysis of contact stiffness on wear of clearance joint[J]. Journal of Tribology, 2017, 139(3): 031403 [CrossRef] [Google Scholar]
24. BORISENKO V, LEORO J, DIDENKO A. Main rotor blade modeling approaches comparison[C]//International Conference on Information Technologies and Mathematical Modelling, 2021 [Google Scholar]
25. WANG Xuanguo, YAN Xinping, LI Taosheng, et al. Research status of wear numerical simulation technology[J]. Tribology, 2004(2): 188–192 [Article] (in Chinese) [Google Scholar]
26. KIM N H, WON D, BURRIS D, et al. Finite element analysis and experiments of metal/metal wear in oscillatory contacts[J]. Wear, 2005, 258: 1787–1793 [CrossRef] [Google Scholar]
27. LI Jing, YIN Jun. On the wear simulation of self-lubrication bearings[J]. Lubrication Engineering, 2018, 43(11): 120–124 [Article] (in Chinese) [Google Scholar]
28. LU Jianjun, QIU Ming, LI Yingchun. Wear life model for self-lubricating radial spherical plain bearings[J]. Journal of Mechanical Engineering, 2015, 51(11): 56–63 [Article] (in Chinese) [Google Scholar]
29. YU Ruifeng, DIAO Binbin, GAO Deli. A calculation model for improving the relative borehole uncertainty based on the least square method in relief well[J]. Journal of Petroleum Science and Engineering, 2022, 217: 70–76 [Google Scholar]
30. YANG Yuqian. Research on performance degradation law and reliability modeling of typical components of civil aircraft[D]. Xi'an: Northwestern Polytechnical University, 2015: 67–69 (in Chinese) [Google Scholar]

## All Figures

 图1考虑磨损演化的动力学建模方法 In the text
 图2某型飞机后缘襟翼结构图 In the text
 图3襟翼翼面的边界自由度 In the text
 图4襟翼翼面气动载荷 In the text
 图5滚珠丝杠转动速度 In the text
 图6未考虑磨损时的仿真结果 In the text
 图7铰链轴承磨损演化仿真模型 In the text
 图8磨损前和磨损后轴承位移云图 In the text
 图9轴承17°处的磨损曲线 In the text
 图10磨损深度与偏转角度关系 In the text
 图11考虑轴承非均匀磨损时的驱动力矩 In the text
 图12不同角度的内外轴承磨损深度差 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.