Open Access
Issue
JNWPU
Volume 42, Number 5, October 2024
Page(s) 875 - 881
DOI https://doi.org/10.1051/jnwpu/20244250875
Published online 06 December 2024
  1. BAO Zheng, XING Mengdao, WANG Tong. Radar imaging technology[J]. Beijing: Publishing House of Electronic Industry, 2005 (in Chinese) [Google Scholar]
  2. LU Baoguo, LIANG Bo, MA Huanfang. Method for aircraft target recognition and classification in optical remote sensing image[J]. Command Information System and Technology, 2020, 11(5): 78–82 (in Chinese) [Google Scholar]
  3. XU Ying, GU Yu, PENG Dongliang. SAR image recognition based on sparse representation and multi-feature fusion[J]. Command Information System and Technology, 2020, 11(3): 29–35 (in Chinese) [Google Scholar]
  4. GUILLAUME H, RENE G. High resolution snapshot SAR/ISAR imaging of ship targets at sea[J]. SPIE Remote Sensing, 2003, 488339–47 [Google Scholar]
  5. LAZAROV A, MINCHEV C N. ISAR image reconstruction and autofocusing procedure over phase modulated signals[J]. Radar, 2002, 490: 536–541 [Google Scholar]
  6. DONOHO D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289–1306 [Article] [CrossRef] [Google Scholar]
  7. CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(2): 489–509 [Article] [CrossRef] [Google Scholar]
  8. CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223 [Article] [CrossRef] [Google Scholar]
  9. WEHNER D R. High-resolution radar[M]. 2nd ed. Boston, MA: Artech House, Inc, 1994 [Google Scholar]
  10. BARANIUK R, STEEGHS P. Compressive radar imaging[C]//The 2007 IEEE Radar Conference, 2007: 128-133 [Google Scholar]
  11. POTTER L C, PARKER J T. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006–1020 [Article] [CrossRef] [Google Scholar]
  12. PATEL V M, EASLEY G R, HEALY D M. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244–254 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  13. TROPP J A. Greed is good: algorithmic results for sparse approximation[J]. IEEE Trans on Information Theory, 2004, 50(10): 2231–2242 [Article] [CrossRef] [Google Scholar]
  14. DAUBECHIES I, TESCHKE G, VESE L A. Iteratively solving linear inverse problems under general convex constraints[J]. Inverse Problems and Imaging, 2007, 1(1): 29–46 [Article] [CrossRef] [Google Scholar]
  15. DONOHO D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797–829 [Article] [CrossRef] [MathSciNet] [Google Scholar]
  16. BOYD S, VANDENBERGHE L. Convex optimization[J]. Cambridge: Cambridge University Press, 2004 [CrossRef] [Google Scholar]
  17. ZHANG L, QIAO Z J, XING M D. High-resolution isar imaging by exploiting sparse apertures[J]. IEEE Trans on Antennas and Propagation, 2012, 60(2): 997–1008 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. ZHANG L, QIAO Z J, XING M D. High-resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Trans on Geoscience and Remote Sensing, 2011, 49(11): 4630–4651 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  19. ZHANG L, XING MD, QIU C W. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 567–571 [Article] [CrossRef] [Google Scholar]
  20. BOYD S, PARIKH N, CHU Eet al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1–122 [Google Scholar]
  21. CHAMBOLLE A, VORE D E, NAM-YONG R Aet al. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage[J]. IEEE Trans on Image Processing, 1998, 7(3): 319–335 [Article] [CrossRef] [Google Scholar]
  22. DAUBECHIES Ingridj, DEFRISE Michel, DEMOL Christine. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413–1457 [Article] [CrossRef] [Google Scholar]
  23. CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011, 40(1): 120–145 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  24. ESSER E, ZHANG X, CHAN T F. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[J]. SIAM Journal on Imaging Sciences, 2010, 3(4): 1015–1046 [Article] [CrossRef] [Google Scholar]
  25. CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877–905 [CrossRef] [Google Scholar]
  26. CHARTRAND R, STANEVA V. Restricted isometry properties and nonconvex compressive sensing[J]. Inverse Problems, 2008, 24(3): 035020 [Article] [CrossRef] [Google Scholar]
  27. FOUCART S, LAI M J. Sparsest solutions of underdetermined linear systems via lq-minimization for 0 < q < 1[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 395–407 [CrossRef] [Google Scholar]
  28. SUN Q. Recovery of sparsest signals via lq-minimization[J]. Applied and Computational Harmonic Analysis, 2012, 32(3): 329–341 [Article] [CrossRef] [Google Scholar]
  29. FIGUEIREDO M A T, BIOUCAS-DIAS J M, NOWAK R D. Majorization-minimization algorithms for wavelet-based image restoration[J]. IEEE Trans on Image Processing, 2007, 16(12): 2980–2991 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.