Open Access
Issue
JNWPU
Volume 42, Number 6, December 2024
Page(s) 1063 - 1070
DOI https://doi.org/10.1051/jnwpu/20244261063
Published online 03 February 2025
  1. BARTOLOMEIS D A, NEWMAN S T, JAWAHIR I S, et al. Future research directions in the machining of inconel 718[J]. Journal of Materials Processing Technology, 2021, 297: 117260 [Article] [CrossRef] [Google Scholar]
  2. BYRON B M, PAUL G, GLEN S, et al. Metal additive manufacturing in aerospace: a review[J]. Materials & Design, 2021, 209: 110008 [Article] [CrossRef] [Google Scholar]
  3. HOSSEINI E, POPOVICH V A. A review of mechanical properties of additively manufactured inconel 718[J]. Additive Manufacturing, 2019, 30: 100877 [Article] [CrossRef] [Google Scholar]
  4. HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371–392 [Article] [CrossRef] [Google Scholar]
  5. RAZAVYKIA A, BRUSA E, DELPRETE C, et al. An overview of additive manufacturing technologies——a review to technical synthesis in numerical study of selective laser melting[J]. Materials, 2020, 13(17): 3895 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  6. KOHALE V, JAWADE S, KAKANDIKAR G. Investigation on mechanical behaviour of inconel 718 manufactured through additive manufacturing[J]. International Journal on Interactive Design and Manufacturing, 2023, 17(4): 1645–1651 [Article] [CrossRef] [Google Scholar]
  7. TROSCH T, STRÖßNER J, VÖLKL R, et al. Microstructure and mechanical properties of selective laser melted inconel 718 compared to forging and casting[J]. Materials Letters, 2016, 164: 428–431 [Article] [CrossRef] [Google Scholar]
  8. KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108: 36–45 [Article] [CrossRef] [Google Scholar]
  9. ZHOU H T, SU H J, GUO Y N, et al. Formation and evolution mechanisms of pores in inconel 718 during selective laser melting: meso-scale modeling and experimental investigations[J]. Journal of Manufacturing Processes, 2022, 81: 202–213 [Article] [CrossRef] [Google Scholar]
  10. ADITYA P, SUMIT C, VIDIT G. A numerical study on microstructural features evolved across the melt pool in additively manufactured IN718 alloy[J]. Materials Science and Engineering: A, 2023, 868: 144763 [Article] [CrossRef] [Google Scholar]
  11. NIE P L, OLANREWAJU A, LI Z G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J]. Acta Materialia, 2014, 77: 85–95 [Article] [CrossRef] [Google Scholar]
  12. LE T N, LO Y L, LIN Z H. Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy[J]. Additive Manufacturing, 2020, 36: 101519 [Article] [CrossRef] [Google Scholar]
  13. MULLINS W W, SEKERKA R F. Stability of a planar interface during solidification of a dilute binary alloy[J]. Journal of Applied Physics, 1964, 35(2): 444–451 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. FISHER D J, KURZ W. A theory of branching limited growth of irregular eutectics[J]. Acta Metallurgica, 1980, 28(6): 777–794 [Article] [CrossRef] [Google Scholar]
  15. LANGER J S, MULLERKRUMBHAAR H. Stability effects in dendritic crystal growth[J]. Journal of Crystal Growth, 1977, 42(12): 11–14 [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.