Open Access
Issue |
JNWPU
Volume 42, Number 6, December 2024
|
|
---|---|---|
Page(s) | 1135 - 1143 | |
DOI | https://doi.org/10.1051/jnwpu/20244261135 | |
Published online | 03 February 2025 |
- NIU Y, LONG G, LIU W, et al. Boundary-aware RGB-D salient object detection with cross-modal feature sampling[J]. IEEE Trans on Image Process, 2020, 29(5): 9496–9507 [NASA ADS] [CrossRef] [Google Scholar]
- QIN X, ZHANG Z, HUANG C, et al. BASNet: boundary-aware salient object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 7471–7481 [Google Scholar]
- PANG Y, ZHANG L, ZHAO X, et al. Hierarchical dynamic filtering network for RGB-D salient object detection[C]//Proceedings of the Computer Vision, 2020: 235–252 [Google Scholar]
- JI W, LI J, ZHANG M, et al. Accurate RGB-D salient object detection via collaborative learning[C]//Proceedings of the Computer Vision, 2020: 52–69 [Google Scholar]
- CONG R, LEI J, ZHANG C., et al. Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion[J]. IEEE Signal Process Letters, 2016, 23(8): 819–823. [Article] [CrossRef] [Google Scholar]
- REN J, GONG X J, YU L, et al. Exploiting global priors for RGB-D saliency detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, 2015: 25–32 [Google Scholar]
- LIANG F, DUAN L, MA W, et al. Stereoscopic saliency model using contrast and depth-guided-background prior[J]. Neurocomputing, 2018, 275(15): 2227–2238. [Article] [CrossRef] [Google Scholar]
- CHEN S, FU Y. Progressively guided alternate refinement network for RGB-D salient object detection[C]//Proceedings of the Computer Vision, 2020: 520–538 [Google Scholar]
- LI G, LIU Z, YE L, et al. Cross-modal weighting network for RGB-D salient object detection[C]//Proceedings of the Computer Vision, 2020: 665–681 [Google Scholar]
- ZHANG C, CONG R, LIN Q, et al. Cross-modality discrepant interaction network for RGB-D salient object detection[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 2094–2102 [Google Scholar]
- ZHANG W, JIANG Y, FU K, et al. BTS-net: bi-directional transfer-and-selection network for RGB-D salient object detection[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, Shenzhen, 2021: 1–6 [Google Scholar]
- LI G, LIU Z, CHEN M, et al. Hierarchical alternate interaction network for RGB-D salient object detection[J]. IEEE Trans on Image Process, 2021, 30(6): 3528–3542. [Article] [CrossRef] [Google Scholar]
- WANG W, ZHAO S, SHEN J, et al. Salient object detection with pyramid attention and salient edges[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 1448–1457 [Google Scholar]
- LIU J J, HOU Q, CHENG M M, et al. A simple pooling-based design for real-time salient object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 3912–3921 [Google Scholar]
- SONG D, DONG Y, LI X. Hierarchical edge refinement network for saliency detection[J]. IEEE Trans on Image Process, 2021, 30: 7567–7577. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- YANG Z, SOLTANIAN-ZADEH S, FARSIU S. BiconNet: an edge-preserved connectivity-based approach for salient object detection[J]. Pattern Recognition, 2022, 12(6): 121–131. [Article] [Google Scholar]
- ZHAI Y, FAN D P, YANG J, et al. Bifurcated backbone strategy for RGB-D salient object detection[J]. IEEE Trans on Image Process, 2021, 30(9): 8727–8742. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- LI C, CONG R, PIAO Y, et al. RGB-D salient object detection with cross-modality modulation and selection[C]//Proceedings of of the Computer Vision, 2020: 225–241 [Google Scholar]
- JIN W D, XU J, HAN Q, et al. CDNet: complementary depth network for RGB-D salient object detection[J]. IEEE Trans on Image Process, 2021, 30(9): 3376–3390. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- SUN P, ZHANG W, WANG H, et al. Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021: 1407–1417 [Google Scholar]
- ZHANG Z, LIN Z, XU J, et al. Bilateral attention network for RGB-D salient object detection[J]. IEEE Trans on Image Process, 2021, 30(5): 1949–1961. [Article] [CrossRef] [Google Scholar]
- ZHANG W, JI G P, WANG Z, et al. Depth quality-inspired feature manipulation for efficient RGB-D salient object detection[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 731–740 [Google Scholar]
- ZHAO X, PANG Y, ZHANG L, et al. Self-supervised representation learning for RGB-D salient object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022 [Google Scholar]
- ZHANG M, YAO S Y, HU B Q, et al. C2DFNet: criss-cross dynamic filter network for RGB-D salient object detection[J]. IEEE Trans on Multimedia, 2022, 25(3): 1–13 [Google Scholar]
- ZHOU J Y, WANG L J, LU H C, et al. MVSalNet: multi-view augmentation for RGB-D salient object detection[C]//Proceedings of the Computer Vision, 2022: 270–287 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.