Open Access
Issue
JNWPU
Volume 42, Number 6, December 2024
Page(s) 987 - 995
DOI https://doi.org/10.1051/jnwpu/20244260987
Published online 03 February 2025
  1. DAS K, HAMED A, BASU D. Ice shape prediction for turbofan rotating blades[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006: 209 [Google Scholar]
  2. VEILLARD X, HABASHI W G, BARUZZI G S. Icing simulation in multistage jet engines[J]. Journal of Propulsion and Power, 2011, 27(6): 1231–1237 [Article] [CrossRef] [Google Scholar]
  3. MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006: 206 [Google Scholar]
  4. VEILLARD X, ALIAGA C, HABASHI W G. FENSAP-ICE modeling of the ice particle threat to engines in flight[C]//2007 SAE Aircraft and Engine Icing International Conference, 2007 [Google Scholar]
  5. MASON J, GRZYCH M L, CHOW P. Current perspectives on jet engine power loss in ice crystal conditions: Engine icing[C]//2008 AIAA Atmospheric and Space Environments 7th AIRA Research Implementation Forum, 2008 [Google Scholar]
  6. GALEOTE B. Ice crystal particle measurement using shadowgraph imaging techniques[C]//AIAA Atmospheric and Space Environments Conference, 2010 [Google Scholar]
  7. MACLEOD J, FULEKI D. Ice crystal accretion test rig development for a compressor transition duct[C]//AIAA Atmospheric and Space environments Conference, 2010 [Google Scholar]
  8. CURRIE T, STRUK P, TSAO J C, et al. Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines[C]//AIAA Atmospheric and Space Environments Conference, 2012: 3035 [Google Scholar]
  9. KNEZEVICI D C, FULEKI D, MACLEOD J. Development and commissioning of a linear compressor cascade rig for ice crystal research[C]//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, 2011 [Google Scholar]
  10. KNEZEVICI D, FULEKI D, CURRIE T, et al. Particle size effects on ice crystal accretion[C]//AIAA Atmospheric and Space Environments Conference, 2012: 3039 [Google Scholar]
  11. JORGENSON P C E, VERES J P, WRIGHT W B, et al. Engine icing modeling and simulation(part Ⅰ): ice crystal accretion on compression system components and modeling its effects on engine performance[C]//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, 2011 [Google Scholar]
  12. MAZZAWY R S. Modeling of ice accretion and shedding in turbofan engines with mixed phase/glaciated(ice crystal) conditions[C]//2007 SAE Aircraft and Engine Icing International Conference, 2007 [Google Scholar]
  13. STRUK P M, RATVASKY T P, BENCIC T, et al. An initial study of the fundamentals of ice crystal icing physics in the NASA propulsion systems laboratory[C]//9th AIAA Atmospheric and Space Environments Conference, 2017: 4242 [Google Scholar]
  14. CHEN R C, STRUK P M, RATVASKY T P. Cloud uniformity measurement from NASA's 2nd fundamental ice crystal icing test part 1(water content & PSD)[C]//AIAA Aviation 2020 Forum, 2020: 2840 [Google Scholar]
  15. AGUI J H, VON HARDENBERG P, STRUK P M, et al. Cloud uniformity measurement from NASA's 2nd fundamental ice crystal icing test-part 2(temperature & humidity)[C]//AIAA Aviation 2020 Forum, 2020: 2841 [Google Scholar]
  16. BAUMERT A, BANSMER S, TRONTIN P, et al. Experimental and numerical investigations on aircraft icing at mixed phase conditions[J]. International Journal of Heat and Mass Transfer, 2018, 123: 957–978 [Article] [CrossRef] [Google Scholar]
  17. BARTKUS T P, STRUK P M, TSAO J C. Evaluation of a thermodynamic ice-crystal icing model using experimental ice accretion data[C]//2018 Atmospheric and Space Environments Conference, 2018: 4129 [Google Scholar]
  18. CURRIE T C. A physics-based model for predicting warm surface cool-down resulting from particle impingement in ice crystal icing[C]//AIAA Aviation 2020 Forum, 2020: 2829 [Google Scholar]
  19. SHEN Hao, HAN Bingbing, ZHANG Lifen. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1–7 (in Chinese) [Google Scholar]
  20. SU Longwei, SHEN Shicai, TIAN Xiaoping, et al. Research progress on ice crystal icing in aeroengine[J]. Aeroengine, 2023, 49(5): 89–99 (in Chinese) [Google Scholar]
  21. HUANG Ping, BU Xueqin, LIU Yiming, et al. Review of the mixed phase/glaciated ice accretion[J]. Acta Aeronautica et Astronautica Sinica, 2021, 43(5): 120–138 (in Chinese) [Google Scholar]
  22. ZHANG L F, LIU Z X, ZHANG M H. Numerical simulation of ice accretion under mixed-phase conditions[J]. Journal of Aerospace Engineering, 2016, 230(G13): 2473–2483 [Article] [Google Scholar]
  23. JIANG Feifei, DONG Wei, ZHENG Mei, et al. Phase change heat transfer characteristic of ice crystal ingested into turbofan engine[J]. Journal of Aerospace Power, 2019, 34(3): 567–575 (in Chinese) [Google Scholar]
  24. BU Xueqin, LI Hao, HUANG Ping, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085 (in Chinese) [Google Scholar]
  25. BU Xueqin, HUANG Ping, LIN Guiping, et al. Numerical simulation of ice crystal icing by multi-step method[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 1129308 (in Chinese) [Google Scholar]
  26. WEI Zhen, LIU Xiufang, ZHONG Fuhao, et al. Visual experimental investigation on the melting characteristics of minuscule ice crystal particles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(suppl 2): 729301 (in Chinese) [Google Scholar]
  27. MA Yijian, CHAI Delin, YI Xian, et al. Calculation method for ice crystal/mixed phase icing considering ice crystal erosion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 276–286 (in Chinese) [Google Scholar]
  28. MA Yijian, CHAI Delin, WANG Qiang, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 41–52 (in Chinese) [Google Scholar]
  29. LIU Jianfang, SHEN Hao, ZHANG Lifen, et al. Research on the drag coefficient of particles with different shapes[J]. Advances in Aeronautical Science and Engineering, 2024, 15(2): 35–41 (in Chinese) [Google Scholar]
  30. REID L, MOORE R D. Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor[R]. NASA-TP-1337, 1978 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.