Open Access
Issue
JNWPU
Volume 43, Number 1, February 2025
Page(s) 109 - 118
DOI https://doi.org/10.1051/jnwpu/20254310109
Published online 18 April 2025
  1. JIANG B, WOODELLl G A, JOBSON D J. Novel multi-scale retinex with color restoration on graphics processing unit[J]. Journal of Real-Time Image Processing, 2015, 10: 239–253. [Article] [Google Scholar]
  2. STARK J A. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Trans on Image Processing, 2000, 9(5): 889–896 [NASA ADS] [CrossRef] [Google Scholar]
  3. FATTAL R Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 1–9 [Google Scholar]
  4. HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341–2353 [Google Scholar]
  5. YANG Yan, WANG Zhiwei. Adaptive image dehazing algorithm based on mean unequal relation optimization[J]. Journal of Electronics&Information Technology, 2020, 42(3): 755–763 (in Chinese) [Google Scholar]
  6. WANG J B, HE N, ZHANG L L, et al. Single image dehazing with a physical model and dark channel prior[J]. Neurocomputing, 2015, 149: 718–728. [Article] [Google Scholar]
  7. CAI B, XU X, JIA K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Trans on Image Processing, 2016, 25(11): 5187–5198. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. REN W, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//14th European Conference on Computer Vision, Amsterdam, the Netherlands, 2016: 154–169 [Google Scholar]
  9. LI B, PENG X, WANG Z, et al. Aod-net: all-in-one dehazing network[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4770–4778 [Google Scholar]
  10. QIN X, WANG Z, BAI Y, et al. FFA-net: feature fusion attention network for single image dehazing[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 11908–11915 [Google Scholar]
  11. DAI L, LIU H, LI S. MSNet: A multistage network for lightweight image dehazing with content-guided attention and adaptive encoding[J]. Electronics, 2024, 13(19): 1–12. [Article] [Google Scholar]
  12. DONG H, PAN J, XIANG L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2157–2167 [Google Scholar]
  13. LIU Y, ZHU L, PEI S, et al. From synthetic to real: image dehazing collaborating with unlabeled real data[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 50–58 [Google Scholar]
  14. DONG J, PAN J. Physics-based feature dehazing networks[C]//16th European Conference on Computer Vision, Glasgow, UK, 2020: 188–204 [Google Scholar]
  15. WU H, QU Y, LIN S, et al. Contrastive learning for compact single image dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10551–10560 [Google Scholar]
  16. GUO C L, YAN Q, ANWAR S, et al. Image dehazing transformer with transmission-aware 3D position embedding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5812–5820 [Google Scholar]
  17. HONG M, LIU J, LI C, et al. Uncertainty-driven dehazing network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 906–913 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.