Open Access
Issue
JNWPU
Volume 43, Number 1, February 2025
Page(s) 99 - 108
DOI https://doi.org/10.1051/jnwpu/20254310099
Published online 18 April 2025
  1. TANAKA H, YAMAMOTO N, YAIRI T, et al. Reconfigurable cellular satellites maintained by space robots[J]. Journal of Robotics and Mechatronics, 2006, 18(3): 356–364. [Article] [Google Scholar]
  2. BOLCAR M R, BALASUBRAMANIAN K, CLAMPIN M, et al. Technology development for the advanced technology large aperture space telescope (ATLAST) as a candidate large UV-optical-infrared (LUVOIR) surveyor[R]. GSFC-E-DAA-TN25357, 2015 [Google Scholar]
  3. JAEGER T, MIRCZAK W, CRANDALL B. Cellularized satellites-a small satellite instantiation that provides mission and space access adaptability talbot jaeger[C]//Proceedings of the AIAA/USU Conference on Small Satellites, 2016 [Google Scholar]
  4. JAEGER T, MIRCZAK W. Phoenix and the new satellite paradigm created by hiSat[C]//Annual AIAA/USU Conference on Small Satellites, 2018 [Google Scholar]
  5. KORTMANN M, WEISE J. Building block-based "iBOSS" approach[C]//66rd International Astronautical Congress, 2018 [Google Scholar]
  6. JANSEN F, BRANDT T. INPPS flagship with iBOSS building blocks[C]//70th International Astronautical Congress, 2019 [Google Scholar]
  7. YOU Bindi, WEN Xiaolei, LIU Yuqiang, et al. Gait analysis of cellular space robot for on-orbit climbing truss[J]. Journal of Astronautics, 2020, 41(5): 521–530 (in Chinese) [Google Scholar]
  8. CHANG H, HUNG P, ZHANG Y Z, et al. Distributed control allocation for spacecraft attitude takeover control via cellular space robot[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2499–2506 [Google Scholar]
  9. ZHANG Y, WANG W, SUN J, et al. A self-reconfiguration planning strategy for cellular satellites[J]. IEEE Access, 2019, 7: 4516–4528. [Article] [Google Scholar]
  10. CHAUDHRY A U, YANIKOMEROGLU H. Laser intersatellite links in a starlink constellation: a classification and analysis[J]. IEEE Vehicular Technology Magazine, 2021, 16(2): 48–56. [Article] [Google Scholar]
  11. GUO Chongbin, XIA Xiwang, SI Chaoming, et al. A survey of relative position and attitude measurement for formation flying satellite[J]. Aerospace Control, 2018, 36(6): 83–89 (in Chinese) [Google Scholar]
  12. RUIZ-DE-AZUA J A, CALVERAS A, CAMPS A. A novel dissemination protocol to deploy opportunistic services in federated satellite systems[J]. IEEE Access, 2020, 8: 142348–142365 [Google Scholar]
  13. GUO Xiaoxu, XU Zhaobin, XU Kedi, et al. Optimization of multiple access mode for large-scale constellation networking communication[J]. Journal of Northwestern Polytechnical University, 2023, 41(4): 644–653. [Article] (in Chinese) [Google Scholar]
  14. SCHUBERT T, WOLF L, KULAU U. Ns-3-leo: evaluation tool for satellite swarm communication protocols[J]. IEEE Access, 2022, 10: 11527–11537. [Article] [Google Scholar]
  15. MAO Yiding, TIAN Zhou, ZHAO Yu, et al. A DTN packet routing strategy for satellite Networks[J]. Journal of Northwestern Polytechnical University, 2020, 38(suppl.1): 113–119 (in Chinese) [Google Scholar]
  16. LIU Sili. Research on key technologies of satellite formation intersatellite ad hoc networks[D]. Changsha: National University of Defense Science and Technology, 2019 (in Chinese) [Google Scholar]
  17. ZHANG Qiyuan. Design and implementation of low-power routing protocol for wireless sensor network supporting network convergence[D]. Taiyuan: North University of China, 2021 (in Chinese) [Google Scholar]
  18. MALHOTRA A, KAUR S. A comprehensive review on recent advancements in routing protocols for flying ad hoc networks[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(3): 56–61. [Article] [Google Scholar]
  19. ZHONG Dong, WANG Yining, ZHU Yian, et al. A network topology control mechanism based on air vehicle movement characteristics[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 1007–1013. [Article] (in Chinese) [Google Scholar]
  20. MAHMUD I, CHO Y. Adaptive hello interval in fanet routing protocols for green UAVs[J]. IEEE Access, 2019, 7: 63004–63015. [Article] [Google Scholar]
  21. GUO Jin, ZHANG Shengbing, ZHENG Bo, et al. Study on multi-priority and multi-path qos routing protocol for airborne heterogeneous networks[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 851–856. [Article] (in Chinese) [Google Scholar]
  22. ALBU-SLAIH A T, KHUDHAIR H A. ASR-FANET: an adaptive SDN-based routing framework for FANET[J]. International Journal of Electrical and Computer Engineering, 2021, 11(5): 4403–4412. [Article] [Google Scholar]
  23. TANG Y, CHENG N, WU W, et al. Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction[J]. IEEE Trans on Vehicular Technology, 2019, 68(4): 3967–3979 [Google Scholar]
  24. BAMHDI A M. Efficient dynamic-power AODV routing protocol based on node density[J]. Computer Standards & Interfaces, 2020, 70: 103406 [Google Scholar]
  25. MOHAMMED F A B, MEKKY N, SULEIMAN H H, et al. Sectored LEACH (S-LEACH): an enhanced LEACH for wireless sensor network[J]. IET Wireless Sensor Systems, 2022, 12(2): 56–66 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.