Open Access
Issue
JNWPU
Volume 43, Number 3, June 2025
Page(s) 478 - 487
DOI https://doi.org/10.1051/jnwpu/20254330478
Published online 11 August 2025
  1. ZHANG Yufan, LI Yuren, MA Rui, et al. Degradation prediction method of PEMFC based on deep learning hybrid model integrating ARlMA and LSTM[J]. Journal of Northwestern Polytechnical University, 2023, 41(3): 464–470 (in Chinese) [Google Scholar]
  2. WANG Jianfeng, WANG Rongjie, LIN Anhui, et al. Research on degradation prediction method of proton exchange membrane fuel cell[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3367–3378 (in Chinese) [Google Scholar]
  3. WANG Wenxin, YANG Yang, LI Yang, et al. Operating conditions combination analysis method of optimal water management state for PEM fuel cell[J]. Green Energy and Intelligent Transportation, 2023, 2(4): 100105 [Google Scholar]
  4. OU Mingyang, ZHANG Ruofan, SHAO Zhifang, et al. A novel approach based on semi-empirical model for degradation prediction of fuel cells[J]. Journal of Power Sources, 2020, 488: 229435–229445 [Google Scholar]
  5. LIU Hao. Lifetime prediction study of proton exchange membrane fuel cells[D]. Hangzhou: Zhejiang University, 2019 (in Chinese) [Google Scholar]
  6. ZHOU Daming, AL-DURRA A, ZHANG Ke, et al. Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology[J]. Journal of Power Sources, 2018, 399: 314–328 [Google Scholar]
  7. ZHANG Xuexia, HUANG Ping, JIANG Yu, et al. Degradation performance analysis of proton exchange membrane fuel cell stack under dynamic locomotive conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4798–4806 (in Chinese) [Google Scholar]
  8. LIU H, LI Q, CHEN W, et al. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International Journal of Hydrogen Energy, 2019, 445470–5480 [Google Scholar]
  9. CHEN K, LAGHROUCHE S, DJERDIR A. Proton exchange membrane fuel cell degradation and remaining useful life prediction based on artificial neural network[C]//2018 7th International Conference on Renewable Energy Research and Applications, 2018 [Google Scholar]
  10. LIU Jiawei, LI Qi, CHEN Weirong, et al. Remaining useful life prediction method of PEMFC based on kernel extreme learning machine and locally weighted scatterplot smoothing[J]. Proceedings of the CSEE, 2019, 39(24): 7272–7279 (in Chinese) [Google Scholar]
  11. LI Z, ZHENG Z, OUTBIB R. Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space[J]. IEEE Trans on Industrial Electronics, 2019, 67(1): 379–389 [Google Scholar]
  12. WANG F, CHENG X, HSIAO K, et al. Stacked long short-term memory model for proton exchange membrane fuel cell systems degradation[J]. Power Sourses, 2020, 488(22): 7591–7598 [Google Scholar]
  13. MA Rui, YANG Tao, ElENA B, et al. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[J]. Applied Energy, 2018, 231102–115 [CrossRef] [Google Scholar]
  14. CHEN K, LAGHROUCHE S, DJERDIR A. Aging prognosis model of proton exchange membrane fuel cell in different operating conditions[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11761–11772 [Google Scholar]
  15. WU Y, BREAZ E, GAO F, et al. A modified relevance vector machine for PEM fuel-cell stack aging prediction[J]. IEEE Trans on Industry Applications, 2016, 52(3): 2573–2581 [Google Scholar]
  16. CHEN K, LAGHROUCHE S, DJERDIR A. Proton exchange membrane fuel cell prognostics using genetic algorithm and extreme learning machine[J]. Fuel Cells, 2020, 20(3): 263–271 [Google Scholar]
  17. MEZZI R, YOUSFI-STEINER N, PÉRA M C, et al. An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile[J]. Applied Energy, 2021, 283116297 [Google Scholar]
  18. PAN Shiyuan, HUA Zhiguang, WANG Guangwei, et al. Remaining useful life prediction of hydrogen fuel cell based on cascade echo state network[J]. Proceedings of the CSEE, 2024, 44(11): 3367–3378 (in Chinese) [Google Scholar]
  19. HE K, MAO L, YU J, et al. Long-term performance prediction of PEMFC based on LASSO-ESN[J]. IEEE Trans on Instrumentation and Measurement, 2021, 70(99): 1–11 [CrossRef] [Google Scholar]
  20. MA R, XIE R, XU L, et al. A hybrid prognostic method for PEMFC with aging parameter prediction[J]. IEEE Trans on Transportation Electrification, 2021, 7(4): 2318–2331 [Google Scholar]
  21. ZHAO Bo, ZHANG Lingxian, ZHANG Leiqi, et al. A hybrid method for direct prediction of PEMFC remaining useful life[J]. Proceedings of the CSEE, 2024, 44(21): 8554–8568 (in Chinese) [Google Scholar]
  22. LI S, LUAN W, WANG C, et al. Degradation prediction of proton exchange membrane fuel cell based on Bi-LSTM-GRU and ESN fusion prognostic framework[J]. International Journal of Hydrogen Energy, 2022, 47(78): 33466–33478 [Google Scholar]
  23. LI Hao, LI Hao, YANG Yang, et al. PEMFC aging prediction based on improved whale optimization algorithm optimized GRU[J]. Proceedings of the CSEE, 2024, 44(20): 8166–8178 (in Chinese) [Google Scholar]
  24. DENG Zhihua, CHEN Qihong, ZHANG Liyan, et al. Degradation prediction of PEMFCS using stacked echo state network based on genetic algorithm optimization[J]. IEEE Trans on Transportation Electrification, 2022, 8(1): 1454–1466 [Google Scholar]
  25. ZUO J, LYU H, ZHOU D, et al. Long-term dynamic durability test datasets for single proton exchange membrane fuel cell[J]. Data in Brief, 2021, 35106775 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.