Issue |
JNWPU
Volume 37, Number 2, April 2019
|
|
---|---|---|
Page(s) | 407 - 416 | |
DOI | https://doi.org/10.1051/jnwpu/20193720407 | |
Published online | 05 August 2019 |
Group Formation Basd on SATC-ALO and SOM Neural Network
基于SATC-ALO和SOM神经网络的机群编队分组
1
Air Traffic Control and Narigation College Force Engineering University, Xi’an 710038, China
2
959939 PLA Troops, Cangzhou 0617136, China
Received:
26
January
2018
Firstly, the problem of group-air grouping is analyzed to introduce the aircraft attribute grouping model and aircraft fuel consumption grouping model. Then, SATC-ALO optimized by Chaos optimization algorithm and Tournament Selection strategy and SOM neural network are used to solve the formation grouping model. Finally, comparative experiments of similarity calculation method and formation grouping method were performed with 50 groups of data. The experimental results show that hybrid method is superior to Euclidean distance method. SATC-ALO algorithm has the highest grouping accuracyand meets the real-time requirements. However, the number of groups needs to be specified in advance. The accuracy of SOM neural network grouping is slightly lower than SATC-ALO algorithm, but the grouping time is lower than SATC-ALO algorithm, and there is no need to specify the number of groups. Both SOM neural network and SATC-ALO algorithm can perfectly solve the problem of group-air grouping and have practical application value.
摘要
首先,分析机群编队分组问题,同时考虑了飞机属性分组模型和飞机油耗分组模型。然后,使用混沌优化算法和锦标赛选择策略优化后的SATC-ALO算法和SOM神经网络求解编队分组模型。最后,使用50组数据进行相似度计算方法和编队分组方法对比实验。实验结果表明,混合计算法方法优于欧式距离法,SATC-ALO算法分组精度最高,并且满足实时性要求,但需要事先指定分组数目,而SOM神经网络的分组精度稍低于SATC-ALO算法,但分组时间优于SATC-ALO算法,并且不需要指定分组数目。2种方法均可以更好地解决编队分组问题,具有实际应用价值。
Key words: group-air grouping / hybrid calculating method / self-adaptive tent chaos search ant lion optimizer algorithm(SATC-ALO) / self organizing maps network(SOM)
关键字 : 机群编队分组 / 混合计算方法 / 自适应Tent混沌搜索蚁狮优化算法(SATC-ALO) / SOM神经网络
© 2019 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.