Issue |
JNWPU
Volume 39, Number 2, April 2021
|
|
---|---|---|
Page(s) | 249 - 257 | |
DOI | https://doi.org/10.1051/jnwpu/20213920249 | |
Published online | 09 June 2021 |
Cooperative control method of multi-missile formation under uncontrollable speed
速度不可控条件下的多弹编队协同控制方法
1
School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
2
Spacecraft Survival Technology and Effectiveness Evaluation Laboratory, Beijing 100085, China
Received:
4
August
2020
Under the missile speed is uncontrollable, a design method of multi-missile formation flight controller based on the sliding mode variable structure control theory and adaptive dynamic surface control theory is proposed. Firstly, according to the relative position of the leader and the follower in the inertial frame, the tracking error model for the relative position and the expected relative position between the leader and the follower is obtained, and the multi-missile formation control system in the inertial coordinate system is obtained. Secondly, in order to obtain the expression of the formation control system in the ballistic coordinate system, the acceleration of the missile in the ballistic coordinate system is converted to the inertial coordinate system. Combining with the tracking of the relative position and the desired relative position of the leader and the followers, we can obtain the simplified error model for the formation control system. Then the sliding mode variable structure control theory and the adaptive dynamic surface control theory are used to design the formation controllers for the leader and follower missiles respectively, and the stability of the present controller is analysed via the Lyapunov stability theory. Finally, the designed formation controllers are used for the leader and follower missiles to simulate the parameters. The results verify the feasibility and effectiveness of the present method.
摘要
在导弹速度不可控的前提下,提出了一种基于滑模变结构控制理论和自适应动态面控制理论的多弹编队飞行控制器设计方法。在惯性系下对编队模型进行描述,即根据领弹和从弹在惯性系下的相对位置,求得领弹和从弹间的相对位置与期望相对位置的跟踪误差模型;为了得到编队控制系统在弹道坐标系下的表达式,将导弹在弹道坐标系下的俯仰和偏航通道加速度转换到惯性坐标系下,结合领弹和从弹的相对位置与期望相对位置的跟踪误差模型,经过化简得到无需进行速度控制的编队控制系统的具体模型,并且采用滑模变结构控制理论和自适应动态面控制理论分别对领弹和从弹进行编队控制器设计,利用Lyapunov稳定性理论分析了所提控制器的稳定性;领弹和从弹均采用设计好的编队控制器进行参数仿真,结果验证了新方法的可行性和有效性。
Key words: multi-missile formation / sliding mode variable structure control / dynamic surface / a leader-follower strategy
关键字 : 多弹编队 / 滑模变结构控制 / 动态面 / 领弹-从弹策略
© 2021 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.