Open Access
 Issue JNWPU Volume 37, Number 3, June 2019 457 - 464 https://doi.org/10.1051/jnwpu/20193730457 20 September 2019

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 诱饵作用过程描述及建模

 图1空空导弹与抗干扰过程

2 诱饵投放和目标机动对导弹干扰伴随模型

2.1 红外诱饵弹模型

Y方向为例, 建立诱饵弹模型, Z方向与此类似。为了方便建模, 认为在导弹识别真实目标阶段, 诱饵弹加速度aDy为常值, 其具体计算如下

 图2诱饵干扰过程
 图3诱饵干扰作用下能量中心运动模型

2.2 目标机动模型

 图4脉冲输入的纵向加速度信号
 图5桶滚机动作用下能量中心运动模型

2.3 伴随分析模型的建立

 图6导弹受目标机动和诱饵投放干扰线性化模型

3 仿真与分析

3.1 目标桶滚机动与诱饵投放仿真结果

 图7诱饵投放轨迹及速度变化曲线

3.2 桶滚机动对导弹脱靶量影响分析

 图8各桶滚角速率值对应脱靶量随tgo变化曲线

3.3 桶滚机动时诱饵投放对导弹脱靶量影响分析

3.3.1 诱饵弹齐投数量、投放组间隔对导弹脱靶量影响

 图9不同K时导弹脱靶量随tgo变化曲线
 图10不同K时导弹平均脱靶量随投放组间隔变化曲线

3.3.2 起燃时间、投放策略对导弹脱靶量影响

 图114种诱饵弹投放策略
 图12不同投放策略下导弹平均脱靶量随起燃时间变化曲线

References

1. HuangHesong, TongZhongxiang, LiJianxun, et al. Functional Simulation of Infrared Air-to-Air Missiles Based on Combat Assessment[J]. Infrared and Laser Engineering, 2015, 44(3): 803-809 [Article] [Google Scholar]
2. Timo Sailaranta, Ari Siltavuori, Antti Pankkonen. Simple Missile Models against High-G Barrel Roll Maneuver[C]//AIAA Guidance, Navigation, and Control Conference, 2011: 08-11 [Google Scholar]
3. FumiakiImado, SusumuMiwa. Missile Guidance Algorithm Against High-G Barrel Roll Maneuvers[J]. AIAA Journal of Guidance, Control and Dynamics, 1994, 17(4): 123-128 [Article] [CrossRef] [Google Scholar]
4. Arthur Vermeulen, Gerrit Maes. Missile Avoidance Manoeuvres with Simultaneous Decoy Deployment[C]//AIAA Guidance, Navigation, and Control Conference, 2009: 10-13 [Google Scholar]
5. PaulZarchan. Tactical and Strategic Missile Guidance[M]. 5th edition AIAA, Reston, Virginia, 2007 [Google Scholar]
6. HuangHesong, TongZhongxiang, LiTaorui. Defense Strategy of Aircraft Confronted with IR Guided Missile[J]. Mathematical Problems in Engineering, 2017(7): 1-9 [Article] [Google Scholar]
7. HanXiaona. The Research of Infrared Decoy Simulation[J]. Xi'an, Xidian University, 2015 [Google Scholar]
8. WangChaoqun. Some Characteristics of Infrared Jam and Its Simulationtechnique on Infrared Guided Missile[J]. Inrared and Laser Engineering, 2001, 30(4): 163-167 (in Chinese) [Article] [Google Scholar]
9. HuZhaohui,ChenKai, YanJie. Operational Parameters of Airborne Infrared Decoy Aerial-Lauched Set[J]. Inrared and Laser Engineering, 2008, 37(3): 396-399 [Article] [Google Scholar]
10. PanXiangyu, JiXiaoliang, YuYunfeng, et al. Analysis of Jam Effect for Radar Decoy Against Air-to-Air Missile[J]. Command Control & Simulation, 2014, 36(2): 29-32 (in Chinese) [Article] [Google Scholar]
11. HongYang, ZhangKe, LiYanjun. Simulation and Jamming Model of Infrared Bait[J]. Journal of System Simulation, 2006, 18(2): 463-466 [Article] [Google Scholar]
12. WuXiaodi, HuangChaochao. Simulation for the Motion Traces of Infrared Decoys[J]. Laser & Infrared, 2015, 45(12): 1473-1476 (in Chinese) [Article] [Google Scholar]
13. GuWenjin, BiLanjin, WUZhidong. Missile Distance Analysis of Terminal Maneuver Penetration for Surpersonic Anti-Ship Missile Based on Adjoint Technique[J]. Journal of Naval Aeronautical and Astronautical University, 2009, 24(4): 400-404 (in Chinese) [Article] [Google Scholar]

All Figures

 图1空空导弹与抗干扰过程 In the text
 图2诱饵干扰过程 In the text
 图3诱饵干扰作用下能量中心运动模型 In the text
 图4脉冲输入的纵向加速度信号 In the text
 图5桶滚机动作用下能量中心运动模型 In the text
 图6导弹受目标机动和诱饵投放干扰线性化模型 In the text
 图7诱饵投放轨迹及速度变化曲线 In the text
 图8各桶滚角速率值对应脱靶量随tgo变化曲线 In the text
 图9不同K时导弹脱靶量随tgo变化曲线 In the text
 图10不同K时导弹平均脱靶量随投放组间隔变化曲线 In the text
 图114种诱饵弹投放策略 In the text
 图12不同投放策略下导弹平均脱靶量随起燃时间变化曲线 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.