Open Access
 Issue JNWPU Volume 38, Number 6, December 2020 1284 - 1290 https://doi.org/10.1051/jnwpu/20203861284 02 February 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1 智能飞行器多约束航迹规划模型

 图1飞行器航迹规划区域示意图

## 2 基于Dijkstra的全局搜寻算法

### 2.3 算法求解步骤

Step1   变量初始化

d(p1)=0;初始化距离约束矩阵Y, 令yij=wij。当满足w1jC1时, 令pjQ, 更新集合Q;

Step2  修正距离约束矩阵

Step3  修正最短路径权值

Step4  更新遍历点集

Step5   更新距离约束矩阵

Step6   循环迭代

Step7   最短路径回溯

 图2考虑问题校正点下对飞行器航迹寻优的算法流程

## 3 算例仿真

 图3飞行器飞行轨迹三维图

## 4 结论

1) 以误差约束和基于随机概率的误差校正规律为研究重点, 建立多约束条件下智能飞行器航迹规划模型, 求解误差允许范围内最优航迹。

2) 基于Dijkstra设计“全局搜寻”算法对模型进行求解。利用遍历思想迭代求解最短路径, 回溯得到相应校正方案。

3) 利用MATLAB软件生成随机数据组进行实例仿真, 排除算法偶然性, 以此验证该算法的正确性与适用性, 最终实现航迹最短的优化目标。

## References

1. Zhang Taoran. Structural Design of Intelligent Aircraft[J]. Henan Science and Technology, 2018 (26): 122– 123 (in Chinese) [Google Scholar]
2. Shang Hong, Li Yigang, Li Yanfeng, et al. Intelligent Aircraft and Disaster Rescue[J]. China Emergency Rescue, 2007 (2): 26 (in Chinese) [Google Scholar]
3. Kou Jiaxun. Research on Route Planning for Unmanned Aerial Vehicles under Uncertain Environment[D]. Beijing: Beijing Institute of Technology, 2016 (in Chinese) [Google Scholar]
4. Wang Qiong, Liu Meiwan, Ren Weijian, et al. Overview of Common Algorithms for UAV Path Planning[J]. Journal of Jilin University, 2019, 37 (1): 58– 67 (in Chinese) [Google Scholar]
5. Wang Lei. Research on Navigation Technology for UAV in Complex Geografic Conditions[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese) [Google Scholar]
6. Shen Yanhang, Zhou Zhou. A Method of Cooperative Engagement Control for Attack Uninhabited Air Vehicles[J]. Acta Armamentarii, 2008 (10): 1277– 1280 (in Chinese) [Google Scholar]
7. Yan Jiangjiang, Ding Mingyue, Zhou Chengping, et al. 3D Route Planning Based on Feasible First Search[J]. Journal of Astronautics, 2009, 30 (1): 139– 144 (in Chinese) [Google Scholar]
8. Li Sujuan. Research on UAV Route Planning and Evaluation Method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese) [Google Scholar]
9. Xin Peiyuan. Research on Route Planning Method of UAV Based on Complex Constraints of 3D Environment[D]. Beijing: Capital Normal University, 2014 (in Chinese) [Google Scholar]
10. Lin Penghong. Research on Tracking Control and Trajectory Planning of Quadrotor with Multi Constraints[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese) [Google Scholar]
11. Tao Jihua. Research on Path Planning Algorithms for Unmanned Aerial Vehicle[D]. Hangzhou: Hangzhou Dianzi University, 2017 (in Chinese) [Google Scholar]
12. Zhao Yijing, Zheng Zheng, Yang Liu. Survey on Computational-Intelligence-Based UAV Path Planning[J]. Knowledge-Based Systems, 2018, 158: 54– 64 [CrossRef] [Google Scholar]
13. Wu Yu. Coordinated Path Planning for an Unmanned Aerial-Aquatic Vehicle(UAAV) and an Autonomous Underwater Vehicle(AUV) in an Underwater Target Strike Mission[J]. Ocean Engineering, 2019, 182: 162– 173 [CrossRef] [Google Scholar]
14. Shao Shikai, Yu Peng, He Chenglong, et al. Efficient Path Planning for UAV Formation via Comprehensively Improved Particle Swarm Optimization[J/OL]. (2019-08-18)[2020-01-06]. [Article] [Google Scholar]
15. Jia Xin, Yang Shuwen, Zhang Zhihua, et al. A Method to Improve Positioning Accuracy of UAV Image Based on POS Data[J]. Remote Sensing Information, 2019, 34 (4): 92– 96 (in Chinese) [Google Scholar]
16. Tang Jin. Research on High Precision Autonomous Navigation and Monitoring Technology of UAV Based on BDS[D]. Harbin: Harbin Engineering University, 2019 (in Chinese) [Google Scholar]
17. Ge Changli. Investigation on High Precision GPS Positioning Method and Its Application in UAV Positioning System[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018 (in Chinese) [Google Scholar]
18. Zhang Yongming. Research on Error Elimination Technology of Remote Sensing and Positioning System for Light and Small UAV[J]. Computer Measurement & Control, 2018, 26 (5): 234– 236 (in Chinese) [Google Scholar]
19. Yang Zhe. The Error Compensation Technology of Aircraft Navigation System[D]. Beijing: Beijing Institute of Technology, 2016 (in Chinese) [Google Scholar]
20. Wu Xiande, Bai Wenbin, Xie Yaen, et al. A Hybrid Algorithm of Particle Swarm Optimization, Metropolis Criterion and RTS Smoother for Path Planning of UAVs[J]. Applied Soft Computing, 2018, 73: 735– 747 [CrossRef] [Google Scholar]

## All Figures

 图1飞行器航迹规划区域示意图 In the text
 图2考虑问题校正点下对飞行器航迹寻优的算法流程 In the text
 图3飞行器飞行轨迹三维图 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.