Open Access
Volume 37, Number 4, August 2019
Page(s) 816 - 823
Published online 23 September 2019
  1. Chen Hong, Cai Xiaoxia, Xu Yun, et al. Communication Modulation Recognition Based on Multi-Fractal Dimension Characteristics[J]. Journal of Electronics and Information Technology, 2016, 38(4): 863–869 [Article] (In chinese) [Google Scholar]
  2. Yang Faquan, Li Zan, Li Hongyan, et al. Research of Communication Modulation Recongnition Based on Bee Colony Algorithm and Neural Netowork[J]. Systems Engineering and Electronics, 2013, 35(10): 2186–2191 [Article] (In chinese) [Google Scholar]
  3. Li Yibing, Ge Juan, Lin Yun. Modulation Recongition Using Entropy Features and SVM[J]. Systems Engineering and Electronics, 2012, 34(8): 1691–1695 [Article] (In chinese) [Google Scholar]
  4. Zhao Xiongwen, Guo Chunxia, Li Jingchun. Mixed Recognition Algorithm for Signal Modulation Schemes by High-Order Cumulants and Cyclic Spectrum[J]. Journal of Electronics & Information Technology, 2016, 38(3): 674–680 [Article] (In chinese) [Google Scholar]
  5. Han Jie, Zhang Tao, Wang Huanhuan, et al. Communication Emitter Individual Identification Based on 3D-Hibert Energy Spectrum and Multi-Scale Fractal Features[J]. Journal on Communications, 2017, 38(4): 99–109 [Article] (In chinese) [Google Scholar]
  6. Nandi A K, Azzouz E E. Algorithms for Automatic Modulation Recognition of Communication Signals[J]. IEEE Trans on Communications, 1998, 46(4): 431–436 [Article] [CrossRef] [Google Scholar]
  7. Fu Junqiang, Li Rong, Zhao Chenglin, et al. Sequential Bayesian Inference Based Adaptive Modulation Recognition Algorithm[J]. Systems Engineering and Electronics, 2015, 37(12): 2860–2864 [Article] (In chinese) [Google Scholar]
  8. Liu Mingqian, Li Bingbing, Cao Chaofeng, et al. Recognition Method of Digital Modulation Signals over Non-Gaussian Noise in Cognitive Radio[J]. Journal on Communications, 2014, 35(1): 82–88 [Article] (In chinese) [Google Scholar]
  9. Lu Shanshan, Wang Wei, Wang Guoyu. Constellation Recovery and Modulation Recongition for Multiplequadrature Amplitude Modulation Signals[J]. Journal of Mational University of Defense Technology, 2016, 38(6): 130–134 [Article] (In chinese) [Google Scholar]
  10. Swami A, Sadler B M. Hierarchical Digital Modulation Classification Using Cumulants[J]. IEEE Trans on Communications, 2000, 48(3): 416–429 [Article] [CrossRef] [Google Scholar]
  11. Haralick R, Shanmngam K, Dinstein I. Texture Feature for Image Classification[J]. IEEE Trans on Systems, Manand Cybernetics, 1973, 3(6): 768–780 [Article] [Google Scholar]
  12. Ji Zhong, Nie Linhong. Texture Image Classification with Noise-Tolerant Local Binary Pattern[J]. Journal of Computer Research and Development, 2016, 53(5): 1128–1135 [Article] (In chinese) [Google Scholar]
  13. Lee H, Grosse R, Ranganath R. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations[C]//International Conference on Machine Learning, 2009 [Google Scholar]
  14. Lee Y J, Grauman K. Learning the Easy Things First: Self-Paced Visual Category Discovery[C]//Conference on Computer Vision and Pattern Recognition, 2011 [Article] [Google Scholar]
  15. Nixon M, Alberto S. Aguado. Feature Extraction and Image Processing[M]. Amsterdam, Elsevier Academic Press, 2008 [Google Scholar]
  16. Krizhevsky A, Sutskever I, Hinton G. Imagenet Classification with Deep Convolutional Networks[C]//Advances in Neural Information Processing Systems, 2012: 1097–1105 [Article] [Google Scholar]
  17. Goodfellow I, Courville A. On Distinguishability Criteria for Estimating Generative Models[C]//International Conference on Learning Representations, 2014 [Article] [Google Scholar]
  18. Kingma D, Rezende D, Mohamed S. Semi-Supervised Learning with Deep Generative Models[C]//Neural Information Processing Systems, 2014 [Google Scholar]
  19. Bertoncini C, Rudd K, Nousain B. Wavelet Fingerprinting of Radio-Frequency Identification(RFID) Tags[J]. IEEE Trans on Industrial Electronics, 2012, 59(12): 4843–4850 [Article] [CrossRef] [Google Scholar]
  20. Sun Yankui. Wavelet Analysis and Application[M]. Beijing, Mechanical Industry Press, 2005 (In chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.