Open Access
Issue
JNWPU
Volume 38, Number 1, February 2020
Page(s) 183 - 190
DOI https://doi.org/10.1051/jnwpu/20203810183
Published online 12 May 2020
  1. Flores-Abad A, Ma O, Pham K, et al. A Review of Space Robotics Technologies for On-Orbit Servicing[J]. Progress in Aerospace Sciences, 2014, 68(8): 1–26 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  2. Xu W F, Zhang J T, Qian H H, et al. Identifying the Singularity Conditions of Canadarm2 Based on Elementary Jacobian Transformation[C]//IEEE International Conference on Intelligent Robots and Systems, Tokyo, 2013: 795–800 [Google Scholar]
  3. Nakamura Y, Hanafusa H. Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1986, 108(3):163–171 [Article] [CrossRef] [Google Scholar]
  4. Xu Wenfu, Liang Bin, Liu Yu, et al. A Novel Approach to Avoid Singularities of PUMA-Type Manipulators[J]. Acta Automatica Sinica, 2008, 34(6):670–675 [Article] (in Chinese) [Google Scholar]
  5. Nenchev D, Umentani Y, Yoshida K. Analysis of a Redundant Free-Flying Spacecraft/Manipulator System[J]. IEEE Trans on Robotics and Automation, 1992, 8(1): 1–6 [Article] [CrossRef] [Google Scholar]
  6. Zhang Fuhai, Fu Yili, Wang Shuguo. Trajectory Planning of Free-Floating Space Robot with Avoidance of Dynamic Singularity[J]. Robot, 2012, 34(1): 38–43 [Article] (in Chinese) [CrossRef] [Google Scholar]
  7. Papadopoulos E, Dubowsky S. Dynamic Singularities in Free-Floating Space Manipulators[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1993, 115(1): 44–52 [Article] [CrossRef] [Google Scholar]
  8. Nanos K, Papadopoulos E. On Cartesian Motions with Singularities Avoidance for Free-Floating Space Robots[C]//IEEE International Conference on Robotics and Automation, Saint Paul, 2012: 5398–5403 [Article] [Google Scholar]
  9. Zhao Zhenming, Meng Zhengda. Path Planning of Service Mobile Robot Based on Adding-Weight A* Algorithm[J]. Journal of Huazhong University of Science and Technology, 2008(suppl 1):196–198 [Article] (in Chinese) [Google Scholar]
  10. Jia Qingxuan, Chen Gang, Sun Hanxu, et al. Path Planning for Space Manipulator to Avoid Obstacle Based on A* Algorithm[J]. Journal of Mechanical Engineering, 2010, 46(13):109–115 [Article] (in Chinese) [Google Scholar]
  11. Xie Biyun, Zhao Jing, Liu Yu. Motion Planning of Reaching Point Movements for 7R Robotic Manipulators in Obstacle Environment Based on Rapidly-exploring Random Tree Algorithm[J]. Journal of Mechanical Engineering, 2012, 48(3):63–69 [Article] (in Chinese) [Google Scholar]
  12. Wang Yue, Jia Yinghong, Xu Shijie. Collision-Free Motion Planning Algorithm for Redundant Space Manipulators during Coarse Target Capturing[J]. Chinese Space Science and Technology, 2012, 6(3): 49–55 [Article] (in Chinese) [Google Scholar]
  13. Fiorini P, Shiller Z. Motion Planning in Dynamic Environments Using the Relative Velocity Paradigm[C]//IEEE International Conference on Robotics and Automation, Atlanta, 1993: 560–566 [Article] [Google Scholar]
  14. Park M, Jeon J, Lee M. Obstacle Avoidance for Mobile Robots Using Artificial Potential Field Approach with Simulated Annealing[J]. IEEE International Symposium on Industrial Electronics, 2001(3): 1530–1535 [Article] [Google Scholar]
  15. Liu S, Zhang Q, Zhou D. Obstacle Avoidance Path Planning of Space Manipulator Based on Improved Artificial Potential Field Method[J]. Journal of The Institution of Engineers: Series C, 2014, 95(1): 31–39 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. Shi Zhong, Wang Yongzhi, Hu Qinglei. A Polynomial Interpolation Based Particle Swarm Optimization Algorithm for Trajectory Planning of Free-Floating Space Robot[J]. Journal of Astronautics, 2011, 32(7): 1516–1521 [Article] (in Chinese) [Google Scholar]
  17. Kevin M L, Frank C P. Modern Robotics Mechanics, Planning, and Control[M]. Cambridge:Cambridge University Press, 2017 [Google Scholar]
  18. Lyu Shun. Collision Avoidance Path Planning of Free-floating Space Robot[D]. Xi'an: Northwestern Polytechnical University, 2015 (in Chinese) [Google Scholar]
  19. Yang Fan, Zhang Guoliang, Tian Qi, et al. Trajectory Planning-Tracking Integrated Control for a 6R Free-Floating Space Robot via Obstacle Avoidance Pseudo-Distance[J]. Journal of Astronautics, 2018, 39(2): 229–237 [Article] (in Chinese) [Google Scholar]
  20. Wang M M, Luo J J, Walter U. A Non-linear Model Predictive Controller with Obstacle Avoidance for a Space Robot[J]. Advances in Space Research, 2016, 57(8): 1737–1746 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  21. Hubbard P M. Collision Detection for Interactive Graphics Applications[J]. IEEE Trans on Visualization Computer Graphics, 1995, 1(3): 218–230 [Article] [CrossRef] [Google Scholar]
  22. Webster N. Webster's New Universal Unabridged Dictionary[M]. New York: Dilithium Press, 1989: 1–2 [Google Scholar]
  23. Liu X, Baoyin H, MA X. Optimal Path Planning of Redundant Free-Floating Revolute-Jointed Space Manipulators with Seven Links[J]. Multibody System Dynamics, 2013, 29(1): 41–56 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.