Open Access
Issue
JNWPU
Volume 38, Number 2, April 2020
Page(s) 384 - 391
DOI https://doi.org/10.1051/jnwpu/20203820384
Published online 17 July 2020
  1. Meric C. Physical and Mechanical Properties of Cast under Vacuum Aluminum Alloy 2024 Containing Lithium Additions[J]. Mater Res Bull, 2000, 35: 1479–1484 10.1016/S0025-5408(00)00348-2 [CrossRef] [Google Scholar]
  2. Acosta E, Garcia O, Dakessian A, et al. On the Effect of Thermomechanical Processing on the Mechanical Properties of 2297 Plates[J]. Mater Sci Forum, 2002, 1157: 396–402 [Article] [Google Scholar]
  3. Lequeu P, Lassince P, Warner T. Aluminum Alloy Development for the Airbus A380-Part 2[J]. Adv Mater Processes, 2007, 165(7): 41–44 [Article] [Google Scholar]
  4. Lequeu P. Advances in Aerospace Aluminum[J]. Adv Mater Processes, 2008, 166(2): 47–49 [Article] [Google Scholar]
  5. Rioja R J, Liu J. The Evolution of Al-Li Base Products for Aerospace and Space Applications[J]. Met Mater Trans A, 2012, 43A:3325–3337 [Article] [CrossRef] [Google Scholar]
  6. Karabin L M, Bray G H, Rioja R J, et al. Al-Li-Cu-Mg-(Ag) Products for Lower Wing Skin Applications[J]. TMS, 2012, 13: 529 [Article] [Google Scholar]
  7. Moran J P, Bovard F S, Chrzan J D, et al. Corrosion Performance of New Genaration Aluminum-Lithium Alloys for Aerospace Applications[J]. TMS, 2012, 13: 425–430 [Article] [Google Scholar]
  8. Denzer D K, Rioja R J, Bray G H, et al. The Evolution of Plate and Extruded Products with High Strength and Fracture Toughness[J]. TMS, 2012, 13: 587–592 [Article] [Google Scholar]
  9. Jin Xiao, Fu Baoqin, Zhang Chenglu, et al. Strain Localization and Damage Development in 2060 Alloy during Bending[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(12): 1313–1321 10.1007/s12613-015-1199-3 [NASA ADS] [CrossRef] [Google Scholar]
  10. Eiaty Aliabd, Xu Yong, Ha Sangyul, et al. Computational Homogenization of Tensile Deformation Behaviors of a Third Generation Al-Li Alloy 2060-T8 Using Crystal Plasticity Finite Element Method[J]. Materials Science & Engineering A, 2018, 731: 583–594 [Article] [CrossRef] [Google Scholar]
  11. Yan Keng, Wang Tianyu, Liang Haimei, et al. Effects of Rotation Speed on Microstructure and Mechanical Properties of 2060 Al-Cu-Li Alloy in Friction Stir Welding[J]. JMEPEG, 2018, 27: 5803–5808 10.1007/s11665-018-3650-x [NASA ADS] [CrossRef] [Google Scholar]
  12. Gu Cheng, Wei Yanhong, Zhan Xiaohong, et al. Investigation of Welding Parameters on Microstructure and Mechanical Properties of Laser Beam-Welded Joint of 2060 Al-Cu-Li Alloy[J]. Int J Adv Manuf Technol, 2017, 91: 771–780 10.1007/s00170-016-9806-7 [CrossRef] [Google Scholar]
  13. Peng Jingwen, Li Weidong, Wan Min, et al. Investigation on Three-Roller Cylindrical Bending of 2060-T8 Al-Li Alloy Plate for Aircraft Fuselage Skin Components[J]. Int J Mater Form, 2018, 11: 269–273 10.1007/s12289-017-1350-y [NASA ADS] [CrossRef] [Google Scholar]
  14. Li F D, Liu Z Y, Wu W T, et al. On the Role of Texture in Governing Fatigue Crack Propagation Behavior of 2524 Aluminum Alloy[J]. Materials Science & Engineering A, 2016, 669: 367–378 [Article] [CrossRef] [Google Scholar]
  15. Sangid M D, Maier H J, Sehitoglu H. The Role of Grain Boundaries on Fatigue Crack Initiation-an Energy Approach[J]. International Journal of Plasticity, 2011, 27: 801–821 10.1016/j.ijplas.2010.09.009 [CrossRef] [Google Scholar]
  16. Chen Y Q, Pan S P, Zhou M Z, et al. Effects of Inclusions, Grain Boundaries and Grain Orientations on the Fatigue Crack Initiation and Propagation Behavior of 2524-T3 Al Alloy[J]. Materials Science & Engineering A, 2013, 580: 150–158 [Article] [CrossRef] [Google Scholar]
  17. Srivatsan T S, Kolar D, Magnusen P. The Cyclic Fatigue and Final Fracture Behavior of Aluminum Alloy 2524[J]. Materials and Design, 2002, 23: 129–139 10.1016/S0261-3069(01)00070-X [NASA ADS] [CrossRef] [Google Scholar]
  18. Bray G H, Glazov M, Rioja R J, et al. Effect of Artificial Aging on the Fatigue Crack Propagation Resistance of 2000 Series Aluminum Alloys[J]. International Journal of Fatigue, 2001, 23: 265–276 10.1016/S0142-1123(01)00159-1 [CrossRef] [Google Scholar]
  19. James Fragomeni, Robert Wheeler, Jata K V. Effect of Single and Duplex Aging on Precipitation Response, Microstructure, and Fatigue Crack Behavior in Al-Li-Cu Alloy AF/C-458[J]. JMEPEG, 2005: 14(1): 18–27 [NASA ADS] [CrossRef] [Google Scholar]
  20. Zhong Jing, Zhong Shen, Zheng Ziqiao, et al. Fatigue Crack Initiation and Early Propagation Behavior of 2A97 Al-Li Alloy[J]. Trans Nonferrous Met Soc China, 2014, 24: 303–309 10.1016/S1003-6326(14)63061-2 [CrossRef] [Google Scholar]
  21. Decreus B, Deschamps A, Geuser F D, et al. The Influence of Cu/Li Ratio on Precipitation in Al-Cu-Li-x Alloys[J]. Acta Mater, 2013, 61: 2207–2218 10.1016/j.actamat.2012.12.041 [Google Scholar]
  22. Gable B M, Zhu A W, Csontos A A. The Role of Plastic Deformation on the Competitive Microstructural Evolution and Mechanical Properties of a Novel Al-Li-Cu-X Alloy[J]. J Light Met, 2001, 1: 1–14 10.1016/S1471-5317(00)00002-X [CrossRef] [Google Scholar]
  23. Schijve J. Fatigue of Structures and Materials Second Edition[M]. Wu Xueren, (Translator). Beijing: Aviation Industry Press, 2014: 71(in Chinese) [Google Scholar]
  24. Zhai T, Jiang X P, Li J X, et al. The Grain Boundary Geometry for Optimum Resistance to Growth of Short Fatigue Cracks in High Strength Al-Alloys[J]. International Journal of Fatigue, 2004, 27(10/11/12): 1202–1209 [Article] [CrossRef] [Google Scholar]
  25. Wu X J, Wallace W, Raizenne M D, et al. The Orientation Dependence of Fatigue-Crack Growth in 8090 Al-Li Plate[J]. Metall Mater Trans A, 1994, 25:575–581 10.1007/BF02651599 [NASA ADS] [CrossRef] [Google Scholar]
  26. Suresh S. Fatigue Crack Deflection and Fracture Surface Contact:Micromechanical Models[J]. Metall Trans A, 1982, 16:249–258 [Article] [Google Scholar]
  27. Blankenship J C P, Hornbogen E, Starke J E A. Predicting Slip Behavior in Alloys Containing Shearable and Strong Particles[J]. Mater Sci Eng A, 1993, 169:33–44 10.1016/0921-5093(93)90596-7 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.