Open Access
Volume 38, Number 2, April 2020
Page(s) 377 - 383
Published online 17 July 2020
  1. Lee S C, Hur S, Kang D, et al. The Performance of Bioinspired Valveless Piezoelectric Micropump with Respect to Viscosity Change[J]. Bioinspiration and Biomimetics, 2016, 11: 1–10 [Article] [Google Scholar]
  2. Ma H K, Luo W F, Lin J Y. Development of a Piezoelectric Micropump with Novel Separable Design for Medical Applications[J]. Sensor and Actuators A:Physical, 2015, 236: 57–66 10.1016/j.sna.2015.10.010 [CrossRef] [Google Scholar]
  3. Zhang Min, Li Songjing, Cai Shen. A Microfluidic Liquid Colour-Changing Glasses Controlled by Valveless Piezoelectric Micro-Pump[J]. Journal of Jilin University, 2017(2): 498–503 [Article] (in Chinese) [Google Scholar]
  4. Sima A H, Salari A, Shafii M B. Low-Cost Reciprocating Electromagnetic-Based Micropump for High-Flow Rate Applications[J]. Journal of Micro-Nanolithography MEMS and MOEMS, 2015, 14: 1–8 [Article] [CrossRef] [Google Scholar]
  5. Islam N, Askari D. Performance Improvement of an AC Electroosmotic Micropump by Hydrophobic Surface Modification[J]. Microfluidics and Nanofluidics, 2012, 14: 627–635 [Article] [CrossRef] [Google Scholar]
  6. Islam N, Reyna J. Bi-Directional Flow Induced by an AC Electroosmotic Micropump with DC Voltage Bias[J]. Electrophoresist, 2012, 33: 1191–1197 10.1002/elps.201100544 [CrossRef] [Google Scholar]
  7. Liu B, Sun J C, Li D S, et al. A High Low Rate Thermal Bubble-Driven Micropump with Induction Heating[J]. Microfluidics and Nanofluidics, 2016, 20: 155 10.1007/s10404-016-1822-2 [CrossRef] [Google Scholar]
  8. Gassmann S, Pagel L, LUQUE A, et al. Fabrication of Electroosmotic Micropump Using PCB and SU-8[C]//38th Annual Conference on IEEE Industrial Electronics Society, Montreal, 2012: 3958–3961 [Google Scholar]
  9. Guan Yanxia, Dai Jing, Fang Zhaolun, Studies on a Micropump Based on Evaporation and Capillary Effects[J]. Chinese Journal of Analytical Chemistry, 2005, 33: 423–427 10.3321/j.issn:0253-3820.2005.03.032 (in Chinese) [Google Scholar]
  10. Kim H Y, Ikehara Y, Kim J I, et al. Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys[J]. ACTA Materialia, 2006, 54(9): 2419–2429 10.1016/j.actamat.2006.01.019 [Google Scholar]
  11. Villoslada A, Flores A, Copaci D, et al. High-Displacement Flexible Shape Memory Alloy Actuator for Soft Wearable Robots[J]. Robotics and Autonomous Systems, 2015, 73: 91–101 10.1016/j.robot.2014.09.026 [CrossRef] [Google Scholar]
  12. Gao Fei, Wang Yukui, Wang Zhenlong, et al. Prototype Design of a Kind of Biomimetic Cuttlefish Underwater Robot Actuated by SMA Wires[J]. Robot, 2013, 35(3): 346–351 [Article] (in Chinese) [CrossRef] [Google Scholar]
  13. Dahmardeh M, Setarehdan S K. Finite Element Analysis of Thermally Actuated Medical Stent and Staple Implants Using Shape Memory Alloy[J]. International Journal of Nanotechnology, 2017, 14(1/2/3/4/5/6): 66–74 10.1504/IJNT.2017.082446 [NASA ADS] [CrossRef] [Google Scholar]
  14. Sassa F, Ai Z Y, Ginoza T, et al. Miniaturized Shape Memory Alloy Pumps for Stepping Microfluidic Transport[J]. Sensors and Actuators, 2012, 165(1): 157–163 10.1016/j.snb.2011.12.085 [NASA ADS] [CrossRef] [Google Scholar]
  15. Zhou Bo. The Constitutive Models of Shape Memory Alloys[D]. Harbin: Harbin Engineering University, 2006(in Chinese) [Google Scholar]
  16. Sedlak P, Frost M, Benesova B, et al. Thermomechanical Model for NITI-Based Shape Memory Alloys Including R-Phase and Material Anisotropy under Multi-Axial Loadings[J]. International Journal of Plasticity, 2012, 30: 132–151 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.