Open Access
Issue
JNWPU
Volume 38, Number 5, October 2020
Page(s) 1074 - 1083
DOI https://doi.org/10.1051/jnwpu/20203851074
Published online 08 December 2020
  1. Panagiotou P, Anastasopoulos A, Polydoros A. Likelihood Ratio Tests for Modulation Classification[C]//MILCOM 2000 Proceedings of 21st Century Military Communications, Architectures and Technologies for Information Superiority, 2000: 670–674 [Google Scholar]
  2. Polydoros A, Kim K. On the Detection and Classification of Quadrature Digital Modulations in Broad-Band Noise[J]. IEEE Trans on Communications, 1990, 38 (8): 1199– 1211 [Article] [CrossRef] [Google Scholar]
  3. Abdi A, Dobre O A, Choudhry R, et al. Modulation Classification in Fading Channels Using Antenna Arrays[C]//IEEE Military Communications Conference, 2004: 211–217 [Google Scholar]
  4. Zhao Xiongwen, Guo Chunxia, Li Jingchun, et al. Mixed Recognition Algorithm for Signal Modulation Schemes by High-Order Cumulants and Cyclic Spectrum[J]. Journal of Electronics & Information Technology, 2016, 38 (3): 674– 680 [Article] (in Chinese) [Google Scholar]
  5. Liu Yachong, Tang Zhiling. Classification and Identification Method of Communication Radiation Source Feature Based on Softmax Regression[J]. Computer Engineering, 2018, 44 (2): 98– 102 [Article] (in Chinese) [Google Scholar]
  6. Zhang Z, Li Y B, Jin S S, et al. Modulation Signal Recognition Based on Information Entropy and Ensemble Learning[J]. Entropy, 2018, 20 (3): 198– 198 [Article] [CrossRef] [Google Scholar]
  7. Wang H, Guo L L, Dou Z, et al. A New Method of Cognitive Signal Recognition Based on Hybrid Information Entropy and D-S Evidence Theory[J]. Mobile Networks and Applications, 2018, 23 (4): 677– 685 [Article] [CrossRef] [Google Scholar]
  8. O'shea T J, Corgan J, Clancy T C. Convolutional Radio Modulation Recognition Networks[C]//International Conference on Engineering Applications of Neural Networks, 2016: 213–226 [Google Scholar]
  9. O'shea T J, Roy T, Clancy T C. Over-the-Air Deep Learning Based Radio Signal Classification[J]. IEEE Journal of Selected Topics in Signal Process, 2018, 12 (1): 168– 179 [Article] [CrossRef] [Google Scholar]
  10. Jeong S, Lee U, Kim S C. Spectrogram-Based Automatic Modulation Recognition Using Convolution Neural Network[C]//2018 Tenth International Conference on Ubiquitous and Future Networks, 2018: 843–845 [Google Scholar]
  11. Meng Fan, Chen Peng, Wu Lenan. Automatic Modulation Classification:A Deep Learning Enabled Approach[J]. IEEE Trans on Vehicular Technology, 2018, 67 (11): 10760– 10772 [Article]

    MENG Fan, CHEN Peng, WU Lenan. Automatic Modulation Classification:A Deep Learning Enabled Approach[J]. IEEE Trans on Vehicular Technology, 2018, 67(11):10760-10772

    [CrossRef] [Google Scholar]
  12. Bai Pengyuan, Xu Hua, Sun Li. A Recognition Algorithm for Modulation Schemes by Convolution Neural Network and Sopectrum Texture[J]. Journal of Northwestern Polytechnical University, 2019, 37 (4): 816– 823 [Article] (in Chinese) [CrossRef] [Google Scholar]
  13. Zhang Z, Wang C, Gan C, et al. Automatic Modulation Classification Using Convolutional Neural Network with Features Fusion of SPVWD and BJD[J]. IEEE Trans on Signal and Information Processing over Networks, 2019, 5 (3): 469– 478 [Article][Article] [CrossRef] [Google Scholar]
  14. Long Mingsheng. Transfer Learning: Problems and Methods[D]. Beijing: Tsinghua University, 2014(in Chinese) [Google Scholar]
  15. Maulik U, Chakraborty D. A Self-Trained Ensemble with Semi-Supervised SVM:an Application to Pixel Classification of Remote Sensing Imagery[J]. Pattern Recognition, 2011, 44 (3): 615– 623 [Article] [CrossRef] [Google Scholar]
  16. Pawar S, Bhattacharyya P, Palshikar G K. Semi-Supervised Relation Extraction Using EM Algorithm[C]//10th Int Conf on Natural Language Processing, 2013 [Google Scholar]
  17. Chen Bo. Research on Semi-Supevised Transfer Learning[D]. Xi'an: Northwest University, 2015(in Chinese) [Google Scholar]
  18. Li Yue, Guo Xingji, Zhao Xin. Study on Modulation Recognition Based on Higher-Order Cumulants[J]. Journal of Southwest University of Science and Technology, 2018, 33 (3): 64– 68 [Article] (in Chinese) [Google Scholar]
  19. Tan Xiaoheng, Chu Gouxing, Zhang Xuejing, et al. Modulation Recognition Algorithm Based on High-Ordercumulants and Wavelet Transform[J]. Engineering and Electronic, 2018, (1): 171– 177 [Article] (in Chinese) [Google Scholar]
  20. Li Chen, Yang Junan, Liu Hui. Modulation Recognition Algorithm Based on Information Entropy and GA-ELM[J]. Engineering and Electronic, 2020, 42 (1): 223– 229 [Article] (in Chinese) [Google Scholar]
  21. Zhen Z, Yibing L, Shanshan J, et al. Modulation Signal Recognition Based on Information Entropy and Ensemble Learning[J]. Entropy, 2018, 20 (3): 198 [Article] [CrossRef] [Google Scholar]
  22. Ali A, Fan Y. Automatic Modulation Classification Using Deep Learning Based on Sparse Autoencoders with Non-Negativity Constraints[J]. IEEE Signal Processing Letter, 2017, 24 (11): 1626– 1630 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.