Open Access
Volume 38, Number 5, October 2020
Page(s) 1068 - 1073
Published online 08 December 2020
  1. Zadeh L A. Fuzzy Sets[J]. Information and Control, 1965, 8 (3): 338– 353 [Article] [Google Scholar]
  2. Turksen I B. Interval Valued Fuzzy Sets Based on Normal Forms[J]. Fuzzy Sets and Systems, 1986, 20: 191– 210 [Article] [CrossRef] [Google Scholar]
  3. Atanassov K T. Intuitionistic Fuzzy Sets[J]. Fuzzy Sets and Systems, 1986, 20 (1): 87– 96 [Article] [CrossRef] [Google Scholar]
  4. Hu J H, Xiao K L, Chen X H, et al. Interval Type-2 Hesitant Fuzzy Set and Its Application in Multi-Criteria Decision Making[J]. Computers & Industrial Engineering, 2015, 87: 91– 103 [Article] [CrossRef] [Google Scholar]
  5. Yager R. Pythagorean Membership Grades in Multicriteria Decision Making[J]. IEEE Trans on Fuzzy Systems, 2014, 22 (4): 958– 965 [Article] [CrossRef] [Google Scholar]
  6. Yager R. Generalized Orthopair Fuzzy Sets[J]. IEEE Trans on Fuzzy Systems, 2017, 25 (5): 1222– 1230 [Article] [CrossRef] [Google Scholar]
  7. Wei G W, Wei C, Wang J, et al. Some Q-Rung Orthopair Fuzzy Maclaurin Symmetric Mean Operators and Their Applications to Potential Evaluation of Emerging Technology Commercialization[J]. Int J Intell Syst, 2019, 34: 50– 81 [Article] [CrossRef] [Google Scholar]
  8. Yang W, Pang Y F. New Q-Rung Orthopair Fuzzy Partitioned Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making[J]. Int J Intell Syst, 2019, 34: 439– 476 [Article] [CrossRef] [Google Scholar]
  9. Wang J, Gao H, Wei G W, et al. Methods for Multiple-Attribute Group Decision Making with Q-Rung Interval-Valued Orthopair Fuzzy Information and Their Applications to the Selection of Green Suppliers[J]. Symmetry, 2019, 11: 1– 27 [Article] [Google Scholar]
  10. Liu P D, Liu W Q. Multiple-Attribute Group Decision-Making Based on Power Bonferroni Operators of Linguistic Q-Rung Orthopair Fuzzy Numbers[J]. Int J Intell Syst, 2019, 34: 652– 689 [Article] [CrossRef] [Google Scholar]
  11. Wang P, Wang J, Wei G, Wei C. Similarity Measures of Q-Rung Orthopair Fuzzy Sets Based on Cosine Function and Their Applications[J]. Mathematics, 2019, 7: 1– 23 [Google Scholar]
  12. Xu Yue, Liu Lianzhen. Q-Rung Hesitant Fuzzy Sets and Its Application to Multi-Criteria Decision-Making[J]. Pattern Recognition and Artificial Intelligence, 2018, 31 (9): 816– 836 (in Chinese) [Google Scholar]
  13. Liu Peide, Wang Peng. Multiple-Attribute Decision Making Based on Archimedean Bonferroni Operators of Q-Rung Orthopair Fuzzy Numbers[J]. IEEE Trans on Fuzzy Systems, 2019, 27 (5): 834– 848 [Article] [CrossRef] [Google Scholar]
  14. Jie W, Wei G W, Wei C, et al. MABAC Method for Multiple Attribute Group Decision Making under Qrung Orthopair Fuzzy Environment[J]. Defence Technology, 2019, 16: 208– 216 [Article] [Google Scholar]
  15. Gomes L, Lima M. TODIM:Basic and Application to Multicriteria Ranking of Projects with Environmental Impacts[J]. Foundations of Computing and Decision Sciences, 1991, 16 (3): 113– 127 [Google Scholar]
  16. Huang Y H, Wei G W. TODIM Method for Pythagorean 2-Tuple Linguistic Multiple Attribute Decision Making[J]. Journal of Intelligent and Fuzzy Systems, 2018, 35 (1): 901– 915 [CrossRef] [Google Scholar]
  17. Li Y W, Shan Y Q, Liu P O. An Extended TODIM Method for Group Decision Making with the Interval Intuitionistic Fuzzy Sets[J]. Math Probl Eng, 2015, 6: 1– 9 [Article] [Google Scholar]
  18. Liang Xia, Liu Zhengmin, Liu Peide. Pythagorean Uncertain Linguistic TODIM Method Based on Generalized Choquet Integral and Its Application[J]. Control and Decision, 2018, 33 (7): 1303– 1312 [Article] (in Chinese) [Google Scholar]
  19. Liamazares B. An Analysis of the Generalized TODIM Method[J]. European Journal of Operational Research, 2018, 269 (3): 1041– 1049 [Article] [CrossRef] [Google Scholar]
  20. Liu Yi, Qin Ya, Liu Haobin, et al. Generalized q-ROF TODIM Method and Its Application[J]. Control and Decision, 2020, 35 (8): 2021– 2028 (in Chinese) [Google Scholar]
  21. Liang Xia, Jiang Yanping, Liang Haiming. C-TODIM Decision Making Method Considering Correlated Attributes[J]. Operations Research and Management Science, 2015, 24 (2): 101– 107 [Article] (in Chinese) [Google Scholar]
  22. Zhang Yongzheng, Ye Chunming, Ceng Xiuli, et al. A Risky Supplier Selection Approach Based on Hesitant Fuzzy Generalized Choquet Integral[J]. Industrial Engineering Management, 2019, 24 (4): 47– 54 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.