Open Access
Issue
JNWPU
Volume 38, Number 6, December 2020
Page(s) 1179 - 1187
DOI https://doi.org/10.1051/jnwpu/20203861179
Published online 02 February 2021
  1. Brennan L E, Reed I S. Theory of Adaptive Radar[J]. IEEE Trans on AES, 1973, 9(2): 237-252 [Google Scholar]
  2. Klemm R. Detection of Slow Targets by a Moving Active Sonar[J]. Acoustic Signal Processing for Ocean Exploration, 1993, 388(5): 165-170 [CrossRef] [Google Scholar]
  3. Zhan Haoke, Cai Zhiming, Yuan Bingcheng. Space-Time Adaptive Reverberation Suppression in Active Sonar of Torpedo[J]. Journal of Wuhan University of Technology, 2007, 31(6): 947-950 (in Chinese) [Google Scholar]
  4. Zhao Shendong, Zhou Tianzai, Shen Jiansen. Selection of Auxiliary Samples for Reverberation Suppression via STAP[J]. Torpedo Technology, 2016, 24(6): 417-421 (in Chinese) [Google Scholar]
  5. Hao Chengpeng, Shi Bo, Yan Sheng, et al. Reverberation Suppression and Target Detection for Active Sonar[J]. Science & Technology Review, 2017, 35(20): 102-108 (in Chinese) [Google Scholar]
  6. Wei M Y, Shi B, Hao C P, et al. A Novel Weak Target Detection Strategy for Moving Active Sonar[C]//2018 Oceans-MTS/IEEE Kobe Techno-Oceans, Japan, 2018 [Google Scholar]
  7. Reed I S, Mallett J D, Brennan L E. Rapid Convergence Rate in Adaptive Arrays[J]. IEEE Trans on Aerospace and Electronic Systems, 1974, 10(6): 853-863 [CrossRef] [Google Scholar]
  8. Mallat S, Zhang Z. Matching Pursuit with Time-Frequency Dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41(12): 3397-3415 [NASA ADS] [CrossRef] [Google Scholar]
  9. Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition[C]//Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, USA, 1993: 1-5 [Google Scholar]
  10. Chen S S, Donoho D L, Saunders M A. Atomic Decomposition by Basis Pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61 [CrossRef] [MathSciNet] [Google Scholar]
  11. Candés E J. Compressive Sampling[C]//Proceedings of the International Congress of Mathematicians, 2006: 1433-1452 [Google Scholar]
  12. CandÉS E J, Romberg J, Tao T. Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509 [CrossRef] [MathSciNet] [Google Scholar]
  13. CandÉS E J, Tao T. Near-Optimal Signal Recovery from Random Projections:Universal Encoding Strategies[J]. IEEE Trans on Information Theory, 2006, 52(12): 5406-5425 [CrossRef] [Google Scholar]
  14. Yang Z C, De Lamare R C, Liu W J. Sparsity-Based STAP Using Alternating Direction Method with Gain/Phase Errors[J]. IEEE Trans on Aerospace and Electronic Systems, 2017, 53(6): 2756-2768 [CrossRef] [Google Scholar]
  15. Sun Y Z, Yang X P, Teng L, et al. Robust Sparse Bayesian Learning STAP Method for Discrete Interference Suppression in Nonhomogeneous Clutter[C]//IEEE Radar Conference, USA, 2017: 1003-1008 [Google Scholar]
  16. Feng W K, Guo Y D, Zhang Y S, et al. Airborne Radar Space Time Adaptive Processing Based on Atomic Norm Minimization[J]. Signal Processing, 2018, 148: 31-40 [CrossRef] [Google Scholar]
  17. Tuuk P B, Marple L. Compressed Sensing Radar Amid Noise and Clutter[C]//IEEE Asilomar Conference on Signals, Systems and Computers, USA, 2012: 446-450 [Google Scholar]
  18. Yang Z C, Li X, Wang H Q, et al. Adaptive Clutter Suppression Based on Iterative Adaptive Approach for Airborne Radar[J]. Signal Processing, 2013, 93(2): 3567-3577 [CrossRef] [Google Scholar]
  19. Gao Z Q, Tao H H. Robust STAP Algorithm Based on Knowledge Aided SR for Airborne Radar[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 321-329 [CrossRef] [Google Scholar]
  20. Li Z H, Zhang Y H, He X Y, et al. Low-Complexity Off-Grid STAP Algorithm Based on Local Search Clutter Subspace Estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12): 1862-1866 [CrossRef] [Google Scholar]
  21. Yang Zhaocheng, Li Xiang, Wang Hongqiang. An Overview of Space-Time Adaptive Processing Technology Based on Sparsity of Space-Time Power Spectrum[J]. Acta Electronica Sinica, 2014, 42(6): 1194-1204 (in Chinese) [Google Scholar]
  22. Duan Keqing, Yuan Huadong, Xu Hong, et al. An Overview on Sparse Recovery Space-Time Adaptive Processing Technique[J]. Acta Electronica Sinica, 2019, 47(3): 748-756 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.