Open Access
Issue
JNWPU
Volume 39, Number 3, June 2021
Page(s) 675 - 684
DOI https://doi.org/10.1051/jnwpu/20213930675
Published online 09 August 2021
  1. Chen Heng, Zuo Xiaoyang, Zhang Yuzhuo. Tilt-rotor aircraft key technology developing research[J]. Flight Dynamics, 2007, 25 (1): 5– 8 [Article](in chinese) [Google Scholar]
  2. Braganca E. The V-22 Osprey: from troubled past to viable and flexible option[J]. Joint Force Quarterly, 2012, 66: 80– 84 [Google Scholar]
  3. King D W. A System engineering approach to carefree maneuvering in the BA609[C]//American Helicopter Society 61st Annual Forum, Grapevine, 2005 [Google Scholar]
  4. Snyder D E. The quad tiltrotor: its beginning and evolution[C]//International Powered Lift Conference, Arlington, Virginia, 2000 [Google Scholar]
  5. Radhakrishman A, Fredric H S. Quad tilt rotor aerodynamics in ground effect[C]//AIAA Applied Aerodynamics Conference, Toronto, Ontario Canada, 2006 [Google Scholar]
  6. Yeo H, Johnson W. Performance and design investigation of heavy lift tilt-rotor with aerodynamic interference effects[J]. Journal of Aircraft, 2009, 46 (4): 1231– 1239 [Article] [CrossRef] [Google Scholar]
  7. Pan Zheping. Investigation on conversion corridor analysis method of quad tilt rotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese) [Google Scholar]
  8. Wang Z G, Zu R, Duan D Y, Li J B. Tuning of ADRC for QTR in transition process based on NBPO hybrid algorithm[J]. IEEE Access, 2019 (7): 177219– 177240 [Article] [CrossRef] [Google Scholar]
  9. Xia Qingyuan, Xu Jingfa, Jin Kaibao. Tilt-rotor aircraft modeling and its manipulation assignment strategy[J]. Journal of Aerospace Power, 2013, 28 (9): 2017– 2028 [Article](in chinese) [Google Scholar]
  10. Yan Xufei, Chen Renliang. Control strategy optimization of dynamic conversion procedure of tilt-rotor aircraft[J]. Acta Aeronautica et Asastronatica Sinca, 2017, 38 (7): 520865 [Article](in chinese) [Google Scholar]
  11. Cao Yunyun, Chen Renliang. Control strategy for tilt-rotor aircraft trimming in steady level flight[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41 (1): 6– 10 [Article](in chinese) [Google Scholar]
  12. Sha Hongwei, Chen Renliang. Flight dynamics characteristic of tilt rotor aircraft[J]. Journal of Aerospace Power, 2012, 27 (4): 749– 754 [Article](in chinese) [Google Scholar]
  13. Kleinhesselink K M. Stability and control modeling of tilt rotor aircraft[D]. Maryland: University of Maryland, 2007 [Google Scholar]
  14. Guo Jiandong, Song Yanguo. Testing study on aerodynamics and control characteristicsof a small unmanned tilt rotor[J]. Acta Aerodynamica Sinica, 2015, 33 (1): 107– 112 [Article](in chinese) [Google Scholar]
  15. Cui Ying. Stability analysis of a helicopter with an external slung load[D]. Nanjing: Nanjing University of Aeronoatics and Astronautics, 2005(in Chinese) [Google Scholar]
  16. Ferguson S W. A mathematical model for real time flight simulation of a generic tilt-rotor aircraft[R]. NASA-CR-166536 [Google Scholar]
  17. Talbot P D, Tinling B E, Decker W A. A mathematical model of a single main rotor helicopter for piloted simulation[R]. NASA-TM-84281 [Google Scholar]
  18. Mccroskey W J, Spalart P. Airloads on bluff bodies, with application to the rotor-induced downloads on tilt-rotor aircraft[R]. NASA-TM-84401 [Google Scholar]
  19. Yu Zhiming, Chen Renliang, Kong Weihong. Investigation on analysis method for conversion corilor of guad till rotor aircraft[J]. Journal of Beijing University of Aoronaufics and Astronautics, 2020, 46 (11): 2106– 2113 [Article](in chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.