Open Access
Volume 39, Number 3, June 2021
Page(s) 685 - 693
Published online 09 August 2021
  1. Wang W, Du Z, Sun L. Dynamic load effect on tracked robot obstacle performance[C]//IEEE International Conference on Mechatronics, 2007 [Google Scholar]
  2. Dong P, Wang X, Xing H, et al. Design and control of a tracked robot for search and rescue in nuclearpower plant[C]//International Conference on AdvancedRobotics & Mechatronics, 2016 [Google Scholar]
  3. Ou Yi. Design and analysis of mechanical system of special ground mobile robot[D]. Nanjing: Nanjing University of Science and Technology, 2013(in Chinese) [Google Scholar]
  4. Li Yunwang, Ge Shirong, Zhu Hua, et al. Obstaclesur mounting mechanism and obstacle surmounting capability of four-track double-swing arm robot[J]. Robotics, 2010, 32 (2): 157– 165 [Article](in chinese) [Google Scholar]
  5. Quan Qiquan. Controllable postures of a dual crawler-driven robot[J]. Mechatronics, 2010, 20 (2): 281– 292 [Article] [CrossRef] [Google Scholar]
  6. Ohno K, Morimura S, Tadokoro S, et al. Semi-autonomous control system of rescue crawler robot having flippers for getting over unknown-steps[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007 [Google Scholar]
  7. Zhu Yuhang, Fei Yanqiong, Xu Hongwei. Stability analysis of a wheel-track-leg hybrid mobile robot[J]. Springer Netherlands, 2018, 91 (3): 515– 528 [Article] [Google Scholar]
  8. Chen Zongyao, Yan Guozheng, Wang Kundong, et al. Optimization of obstacle crossing performance of joint tracked pipeline detection robot[J]. Journal of Shanghai Jiaotong University, 2011, 45 (7): 1017– 1020 [Article](in chinese) [Google Scholar]
  9. Xu Ruqiang, Han Baolin, Luo Qingsheng, et al. Relationship between structural parameters and obstacle surmounting performance of six-tracked robot[J]. Mechanical Design and Manufacturing, 2012, (7): 113– 15 [Article](in chinese) [Google Scholar]
  10. Meng Guangyao, Wang Zhenhua, Huang Juxin, et al. Structural design and obstacle breaking performance of double swing arm crawler deformable robot[J]. Mechanical Transmission, 2019, 43 (8): 144– 149 [Article](in chinese) [Google Scholar]
  11. Guo Wenfeng, Pan Yutian, Xing Cunzhen. Numerical simulation analysis on sailing resistance of amphibious vehicle[C]//Proceedings of International Conferenc on Information Sciences, Machinery, Materials and Energy, 2015(in chinese) [Google Scholar]
  12. Wang Tao, Xu Guoying, Yao Xinmin, et al. Simulation of two-phase flow field around amphibious vehicle and analysis of water speedability[J]. Chinese Journal of Mechanical Engineering, 2008, 44 (12): 168– 172 [Article](in chinese) [CrossRef] [Google Scholar]
  13. Zhou Jingtao, Cao Fengli, Han Lanyi, et al. Numerical simulation of impact of wave plate on navigati on attitude of amphibious vehicles[J]. Journal of Artillery Firing and Control, 2014, 35 (3): 45– 49 [Article](in chinese) [Google Scholar]
  14. Ehrlich I R, Kamm I O, Worden G. Studies of off-road vehicles in the riverine environment[J]. Journal of Terramechanics, 1969, 6 (4): 149 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.