Open Access
Volume 39, Number 4, August 2021
Page(s) 794 - 800
Published online 23 September 2021
  1. Chen Kean. Active noise control (2nd ed.)[M]. Beijing: National Defense Industry Press, 2014 (in Chinese) [Google Scholar]
  2. Baek K, Elliott S J. Natural algorithms for choosing source locations in active control systems[J]. Journal of Sound and Vibration, 1995, 186(2): 245–267 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. Asano F, Suzuki Y, Swanson D. Optimization of control source configuration in active control systems using Gram-Schmidt orthogonalization[J]. IEEE Trans on Speech and Audio Processing, 1999, 7(2): 213–220 [Article] [CrossRef] [Google Scholar]
  4. Khalilian H, Bajic I V, Vaughan R G. Comparison of loudspeaker placement methods for sound field reproduction[J]. IEEE/ACM Trans on Audio, Speech, and Language Processing, 2016, 24(8): 1364–1379 [Article] [CrossRef] [Google Scholar]
  5. Lilis G, Angelosante D, Giannakis G. Sound field reproduction using the lasso[J]. IEEE/ACM Trans on Audio, Speech, and Language Processing, 2010, 18(8): 1902–1912 [Article] [CrossRef] [Google Scholar]
  6. Gauthier P A, Lecomte P, Berry A. Source sparsity control of sound field reproduction using the elastic-net and the lasso minimizers[J]. Journal of the Acoustical Society of America, 2017, 141(4): 2315–2326 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Ruckman C E, Fuller C R. Optimizing actuator locations in active noise control systems using subset selection[J]. Journal of Sound and Vibration, 1995, 186(3): 395–406 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. Liu J, Wang X, Wu M, et al. An active control strategy for the scattered sound field control of a rigid sphere[J]. Journal of the Acoustical Society of America, 2018, 144(1): 52–58 [Article] [CrossRef] [Google Scholar]
  9. Koyama S, Chardon G, Daudet L. Optimizing source and sensor placement for sound field control: an overview[J]. IEEE/ACM Trans on Audio, Speech, and Language Processing, 2020, 28: 696–714 [Article] [CrossRef] [Google Scholar]
  10. Manolas D A, Borchers I, Tsahalis D T. Simultaneous optimization of the sensor and actuator positions for an active noise and/or vibration control system using genetic algorithms, applied in a dornier aircraft[J]. Engineering Computations, 2000, 17(5): 620–630 [CrossRef] [Google Scholar]
  11. Martin T, Roure A. Optimization of an active noise control system using spherical harmonics expansion of the primary field[J]. Journal of Sound and Vibration, 1997, 201(5): 577–593 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  12. Chen Kean, Xu Jian, Wang Lei, et al. Optimization of secondary sources configuration in two-dimensional space based on sound field decomposition and sparsity-inducing regularization[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 697–703 [Article] (in Chinese) [CrossRef] [Google Scholar]
  13. Betlehem T, Abhayapala T D. Theory and design of sound field reproduction in reverberant rooms[J]. Journal of the Acoustical Society of America, 2005, 117(4): 2100–2111 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. Zhang W, Abhayapala T D, Betlehem T, et al. Analysis and control of multi-zone sound field reproduction using modal-domain approach[J]. Journal of the Acoustical Society of America, 2016, 140(3): 2134–2144 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. Verburg S A, Fernandez-Grande E. Reconstruction of the sound field in a room using compressive sensing[J]. Journal of the Acoustical Society of America, 2018, 143(6): 3770–3779 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. Mignot R, Chardon G, Daudet L. Low frequency interpolation of room impulse responses using compressed sensing[J]. IEEE/ACM Trans on Audio, Speech and Language Processing, 2014, 22(1): 205–216 [Article] [CrossRef] [Google Scholar]
  17. Hansen C, Snyder S, Qiu X, et al. Active control of noise and vibration (2nd ed.)[M]. Boca Raton: CRC Press, 2012 [CrossRef] [Google Scholar]
  18. Wang Y, Chen K. Sparse plane wave decomposition of a low frequency sound field within a cylindrical cavity using spherical microphone arrays[J]. Journal of Sound and Vibration, 2018, 431: 150–162 [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.