Open Access
Volume 40, Number 2, April 2022
Page(s) 271 - 280
Published online 03 June 2022
  1. Wang Yafei, An Yongwang, Yang Jihe. Current situations and trends of near-space vehicles[J]. Technology Foundation of National Defence, 2010(1): 33–37 [Article] (in Chinese) [Google Scholar]
  2. Du Shanyi. Advanced composite materials in aeronautics and astronautics[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1–12 [Article] (in Chinese) [Google Scholar]
  3. Niemann S, Kolesnikov B, Lohse-Busch H, et al. The use of topology optimisation in the conceptual design of next generation lattice composite aircraft fuselage structures[J]. The Aeronautical Journal, 2013, 117(1197): 1139–1154 [Article] [CrossRef] [Google Scholar]
  4. Krog L, Tucker A, Kemp M, et al. Topology optimisation of aircraft wing box ribs[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004 [Google Scholar]
  5. Deng Yangchen, Yan Guang, Gao Tong, et al. Study on integrated design method of aircraft wing structure layout[J]. Aircraft Design, 2004(2): 28–36 [Article] (in Chinese) [Google Scholar]
  6. Balabanov V, Haftka R T. Topology optimization of transport wing internal structure[J]. Journal of Aircraft, 1996, 33(1): 232–233 [Article] [CrossRef] [Google Scholar]
  7. Zegard T, Paulino G H. GRAND-ground structure based topology optimization for arbitrary 2D domains using MATLAB[J]. Structural and Multidisciplinary Optimization, 2014, 50(5): 861–882 [Article] [CrossRef] [Google Scholar]
  8. Zegard T, Paulino G H. GRAND3-ground structure based topology optimization for arbitrary 3D domains using MATLAB[J]. Structural and Multidisciplinary Optimization, 2015, 52(6): 1161–1184 [Article] [CrossRef] [Google Scholar]
  9. Gao Ge. Study on the theory and application of topology optimization of truss structure[D]. Changchun: University of Chinese Academy of Sciences, 2017 (in Chinese) [Google Scholar]
  10. Dimcic M. Structural optimization of grid shells based on genetic algorithms[D]. Stuttgart: Stuttgart University, 2011 [Google Scholar]
  11. Nagy D, Zhao D, Benjamin D. Nature-based hybrid computational geometry system for optimizing component structure//Humanizing Digital Reality[M]. Singapore: Springer, 2018, 167–176 [Google Scholar]
  12. Nagy D. Nature-based hybrid computational geometry system for optimizing the interior structure of aerospace components[C]//ACM SIGGRAPH 2017 Talks, New York, 2017 [Google Scholar]
  13. Hamm C, Jansen S, Philipp B. Verfahren evolutionary light structure engineering(ELiSE)[J]. Counterpoints, 2008, 138: 33–43 [Google Scholar]
  14. Jiang C, Tang C, Seidel H P, et al. Design and volume optimization of space structures[J]. ACM Transactions on Graphics, 2017, 36(4): 159 [Google Scholar]
  15. Maier M, Siegel D, Thoben K D, et al. Transfer of natural micro structures to bionic lightweight design proposals[J]. Journal of Bionic Engineering, 2013, 10(4): 469–478 [Article] [CrossRef] [Google Scholar]
  16. Kueh A, Pellegrino S. ABD matrix of single-ply triaxial weave fabric composites[C]//48th AIAA-ASME-ASCE-AHS-ASC Structures, Structural Dynamics, and Materials Conference, 2007 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.