Open Access
Volume 40, Number 5, October 2022
Page(s) 1004 - 1011
Published online 28 November 2022
  1. WALKER C, STRINGFIELD J. Measurement of the magnetic signature of a moving surface vessel with multiple magnetometer-equipped AUVs[J]. Ocean Engineering, 2013, 64(8): 80–87 [CrossRef] [Google Scholar]
  2. LI L, LIU W, LI L, et al. Magnetic signature measurement of surface ship using a rov-equipped with magnetometer[C]//MTS/IEEE Oceans Conference, Singapore, 2020: 1-5 [Google Scholar]
  3. LIU S, CHEN Z, PAN M, et al. Magnetic anomaly detection based on full connected neural network[J]. IEEE Access, 2019, 7: 182198–182206 [Article] [CrossRef] [Google Scholar]
  4. JUNG J, PARK J, CHOI J, et al. Autonomous mapping of underwater magnetic fields using a surface vehicle[J]. IEEE Access, 2018, 6: 62552–62563 [Article] [CrossRef] [Google Scholar]
  5. GAO Q, CHENG D, WANG Y, et al. A calibration method for the misalignment error between inertial navigation system and tri-axial magnetometer in three-component magnetic measurement system[J]. IEEE Sensors Journal, 2019, 19(24): 12217–12223 [Article] [CrossRef] [Google Scholar]
  6. TOLLES W, MINEOLA A. Magnetic field compensation system: USA, I706801[P]. 1955-04-19 [Google Scholar]
  7. QIAO Zhongkun, MA Guoqing, ZHOU Wenna, et al. Research on the comprehensive compensation of aeromagnetic system error of multi-rotor UAV[J]. Chinese Journal of Geophysics, 2020, 63(12): 4604–4612 [Article] (in Chinese) [Google Scholar]
  8. YU Zhentao, LYU Junwei, JI Shaokang. A compensation method for the vehicle 3-D magnetic field based on ellipsoid constraint[J]. Journal of Harbin Engineering University, 2014, 35(6): 731–734 [Article] (in Chinese) [Google Scholar]
  9. WU Yongliang, WANG Tianmiao, LIANG Jianhong. In-suit error calibration of three-axis magnetometer for unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 330–336 [Article] (in Chinese) [Google Scholar]
  10. PANG H, LI J, CHEN D, PAN M, et al. Calibration of three-axis fluxgate magnetometers with nonlinear least square method[J]. Measurement 2013, 46(4): 1600–1606 [Article] [CrossRef] [Google Scholar]
  11. LI J, ZHANG Q, CHEN D, et al. Magnetic interferential field compensation in geomagnetic measurement[J]. Transactions of the Institute of Measurement and Control, 2013, 36(2): 244–251 [Google Scholar]
  12. WU Zhitian, WU Yuanxin, HU Xiaoping, et al. Calibration of strapdown three-axis magnetometer and measurement error compensation of geomagnetic field based on total least squares[J]. Acta Armamentarii, 2012, 33(10): 1202–1209 [Article] (in Chinese) [Google Scholar]
  13. ZHOU Y, ZHANG X, XIAO W. Calibration and compensation method of three-axis geomagnetic sensor based on pre-processing total least square iteration[J]. Journal of Instrumentation, 2018, 13(4): T04006 [Article] [CrossRef] [Google Scholar]
  14. LIU Z, ZHANG Q, PAN M, et al. Magnetic disturbance field compensation of a geomagnetic vector measuring instrument[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 13: 356–361 [Google Scholar]
  15. LI Ting, ZHANG Jinsheng, WANG Shicheng, et al. Compensation of geomagnetic field measurement error based on damped particle swarm optimization[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2446–2452 [Article] (in Chinese) [Google Scholar]
  16. ZHANG Q, WAN C, PAN M, et al. A component compensation method for magnetic interferential field[J]. Journal of Applied Geophysics, 2017, 139: 331–337 [CrossRef] [Google Scholar]
  17. GAO Q, ZHAO J, CHENG D, et al. A compensation method for the carrier interference of a three-component magnetic measurement system using a Cuckoo search algorithm[J]. Measurement Science and Technology, 2018, 29(8): 1–8 [Google Scholar]
  18. KONSTANTINOS Z, STELIOS T. A mayfly optimization algorithm[J]. Computer&Industrial Engineering, 2020, 145: 1–23 [Google Scholar]
  19. GAO Z, ZHAO J. The improved mayfly optimization algorithm[J]. Journal of Physics Conference Series, 2020, 1684: 1–8 [Google Scholar]
  20. LIANG S, HAO Q, LI J, et al. Chaos optimization algorithm based Tent map[J]. Control and Decision, 2005(2): 179–182 [Google Scholar]
  21. YANG X S, DEB S. Cuckoo search via levy flight[C]//Proceedings of World Congress on Nature & Biologically Inspired Computing, Coimbatore, 2010: 210-214 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.