Open Access
Issue
JNWPU
Volume 40, Number 5, October 2022
Page(s) 1145 - 1154
DOI https://doi.org/10.1051/jnwpu/20224051145
Published online 28 November 2022
  1. SALEH B, JIANG J, FATHI R, et al. 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges[J]. Composites Part B: Engineering, 2020, 201: 108376. [Article] [CrossRef] [Google Scholar]
  2. CARRERA E, BRISCHETTO S, ROBALDO A. Variable kinematic model for the analysis of functionally graded material plates[J]. AIAA, 2006, 46(1): 194–203. [Article] [Google Scholar]
  3. REDDY J N, CHIN C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21: 593–626. [Article] [CrossRef] [Google Scholar]
  4. CHAKRAVERTY S, PRADHAN K K. Free vibration of exponential functionally graded rectangular plates in thermal environm-ent with general boundary conditions[J]. Aerospace Science and Technology, 2014, 36: 132–156. [Article] [CrossRef] [Google Scholar]
  5. BOUAMAMA M, EIMEICHE A, ELHENNANI A, et al. Exact solution for free vibration analysis of FGM beams[J]. Journal of Composite and Advanced Materials, 2020, 30(2): 55–60. [Article] [Google Scholar]
  6. SAFA A, HADJI L, BOURADA M, et al. Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory[J]. Earthquakes and Structures, 2019, 17(3): 329–336. [Article] [Google Scholar]
  7. CHEN Y, JIN G, ZHANG C, et al. Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory[J]. Composites Part B: Engineering, 2018, 153: 376–386. [Article] [CrossRef] [Google Scholar]
  8. XIA Y, LI S, WAN Z. Bending solutions of FGM Reddy-Bickford beams in terms of those of the homogenous Euler-Bernoulli beams[J]. Acta Mechanica Solida Sinica, 2019, 32(29): 499–516. [Article] [CrossRef] [Google Scholar]
  9. LI M, GUEDES SOARES C, YAN R. Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT[J]. Composite Structures, 2021, 264: 113643. [Article] [CrossRef] [Google Scholar]
  10. SIMSEK M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[J]. Nuclear Engineering and Design, 2010, 240(4): 697–705. [Article] [CrossRef] [Google Scholar]
  11. TENG Zhaochun, XI Pengfei. Analysis on free vibration and critical buckling load of a FGM porous rectangular plate[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 317–325. [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  12. ZHAO J, WANG Q, DENG X, et al. Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions[J]. Composites Part B: Engineering, 2019, 168: 106–120. [Article] [CrossRef] [Google Scholar]
  13. KIRAN M C, KATTIMANI S C, VINYAS M. Porosity influence on structural behavior of skew functionally graded magneto-electro-elastic plate[J]. Composite Structures, 2018, 191: 36–77. [Article] [CrossRef] [Google Scholar]
  14. RAO S S. Vibration of continuous systems[M]. 2nd ed. Hoboken: John Wiley and Sons, 2019 [CrossRef] [Google Scholar]
  15. WATTANASAKULPONG N, UNGBHAKORN V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities[J]. Aerospace Science and Technology, 2014, 32(1): 111–120 [CrossRef] [Google Scholar]
  16. EBRAHIMI F, MOKHTARI M. Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(4): 1435–1444. [Article] [CrossRef] [Google Scholar]
  17. GHAZARYAN D, BURLAYENKO V N, AVETISYAN A, et al. Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method[J]. Journal of Engineering Mathematics, 2018, 110(1): 97–121 [NASA ADS] [CrossRef] [Google Scholar]
  18. XIE K, WANG Y, FAN X. Nonlinear free vibration analysis of functionally graded beams by using different shear deformation theories[J]. Applied Mathematical Modelling, 2020, 77(2): 1860–1880 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.