Open Access
Issue
JNWPU
Volume 41, Number 2, April 2023
Page(s) 241 - 252
DOI https://doi.org/10.1051/jnwpu/20234120241
Published online 07 June 2023
  1. VASSBERG J, DEHAAN M, RIVERS M, et al. Development of a common research model for applied CFD validation studies[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008 [Google Scholar]
  2. KENWAY G K W, MARTINS J R R A. Multipoint aerodynamic shape optimization investigations of the common research model wing[J]. AIAA Journal, 2016, 54(1): 113–128 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. TAO J, SUN G, WANG X Y, et al. Robust optimization for a wing at drag divergence Mach number based on an improved PSO algorithm[J]. Aerospace Science and Technology, 2019, 92: 653–667 [Article] [CrossRef] [Google Scholar]
  4. CHEN Yingchun, ZHANG Meihong, ZHANG Miao, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 35–51 (in Chinese) [Google Scholar]
  5. HAN Zhonghua, ZHANG Yu, XU Chenzhou, et al. Aerodynamic shape optimization of large transport aircraft wings using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 155–170 (in Chinese) [Google Scholar]
  6. XUE Bangmeng, ZHANG Wensheng, SUN Xuewei, et al. Multi-objective wing shape optimization for a wide-body civil aircraft in wing-body-pylon-powered nacelle configuration[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 63–73 (in Chinese) [Google Scholar]
  7. HUANG Jiangtao, GAO Zhenghong, YU Jing, et al. A typical integrated design method for aerodynamic shape optimization of large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 52–62 (in Chinese) [Google Scholar]
  8. LEI Ruiwu, BAI Junqiang, XU Danyang, et al. Speciality assessment of sequential and concurrent aerostructural optimization based on coupled adjoint technique[J]. Journal of Aerospace Power, 2019, 34(5): 1036–1049 [Article] (in Chinese) [Google Scholar]
  9. JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233–260 [CrossRef] [Google Scholar]
  10. ALONSO J, LEGRESLEY P, VAN DER WEIDE E, et al. pyMDO: a framework for high-fidelity multi-disciplinary optimization[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, 2004 [Google Scholar]
  11. MARTINS J R R A, ALONSO J J, REUTHER J J. High-fidelity aerostructural design optimization of a supersonic business jet[J]. Journal of Aircraft, 2004, 41(3): 523–530 [CrossRef] [Google Scholar]
  12. BAI Junqiang, LEI Ruiwu, YANG Tihao, et al. The recent progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 103–120 [Article] (in Chinese) [Google Scholar]
  13. MADER C A, KENWAY G K W, YILDIRIM A, et al. ADflow: an open-source computational fluid dynamics solver for aerodynamic and multidisciplinary optimization[J]. Journal of Aerospace Information Systems, 2020, 17(9): 508–527 [Google Scholar]
  14. KENNEDY G J K, MARTINS J R R A. A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures[J]. Finite Elements in Analysis & Design, 2014, 87: 56–73 [Google Scholar]
  15. LIU Yan, BAI Junqiang, HUA Jun, et al. A approach to CFD/CSD non-linear coupling based on RBF interpolation technology[J]. Chinese Journal of Computational Mechanics, 2014, 31(1): 120–127 (in Chinese) [Google Scholar]
  16. ZHANG Bing, HAN Jinglong. Spring-TFI hybrid dynamic mesh method with rotation correction[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1815–1823 [Article] (in Chinese) [Google Scholar]
  17. LAFLIN K R, BRODERSEN O, RAKOWITZ M, et al. Summary of data from the second AIAA CFD drag prediction workshop(Invited)[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004 [Google Scholar]
  18. KEYE S, RUDNIK R. Aero-elastic simulation of DLR's F6 transport aircraft configuration and comparison to experimental data[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009 [Google Scholar]
  19. BURNER A, GOAD W, MASSEY E, et al. Wing deformation measurements of the DLR-F6 transport configuration in the national transonic facility(Invited)[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008 [Google Scholar]
  20. HE Xiaolong, BAI Junqiang, LI Li, et al. CYFFD parameterization method for cylindrical components of aircrafts[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1027–1036 [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  21. KRAFT D. A software packange for sequential quadratic programming[R]. Technical Report DFVLR-FB 88-28, 1988 [Google Scholar]
  22. BOEING COMMERCIAL AIRPLANES. 787 airplane characteristics for airport planning[EB/OL]. (2018-03-01)[2021-09-15]. http://www.boeing.com/resources/boeingdotcom/commercial/airports/acaps/787.pdf [Google Scholar]
  23. KENWAY G K W, KENNEDY G J K, MARTINS J R R A. A scalable parallel approach for high-fidelity aerostructural analysis and optimization[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, 2012 [Google Scholar]
  24. RASPANTI C G, BANDONI J A, BIEGLER L T. New strategies for flexibility analysis and design under uncertainty[J]. Computers & Chemical Engineering, 2000, 24(9/10): 2193–2209 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.