Open Access
Volume 41, Number 6, Decembre 2023
Page(s) 1064 - 1072
Published online 26 February 2024
  1. GONG C, CHEN B, GU L. Design and optimization of RBCC powered suborbital reusable launch vehicle[C]//Proceedings of AIAA International Space Planes & Hypersonic Systems & Technologies Conference, 2013 [Google Scholar]
  2. WANG Yajun, HE Guoqiang, QIN Fei, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1126–1133 (in Chinese) [Google Scholar]
  3. RUAN Jiangang, HE Guoqiang, LYU Xiang. Trajectory optimization method in two-stage-to-orbit RBCC-RKT launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1284–1291 (in Chinese) [Google Scholar]
  4. LYU Xiang, HE Guoqiang, LIU Peijin. Ascent trajectory design method for RBCC-powered vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7) 1332–1337 (in Chinese) [Google Scholar]
  5. LI Huifeng, LI Zhaoying. Indirect method of optimal ascent guidance for hypersonic vehicle[J]. Journal of Astronautics, 2011, 32(2): 297–302 (in Chinese) [Google Scholar]
  6. DEREK J, DRISCOLL F. Minimum-fuel ascent of a hypersonic vehicle using surrogate optimization[J]. Journal of Aircraft, 2014, 51(6): 1973–1986 [Article] [CrossRef] [Google Scholar]
  7. WEI J L, TANG X J, YAN J. Costate estimation for a multiple-interval pseudospectral method using collocation at the flipped Legendre-Gauss-Radau points[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 12: 1–15 [Google Scholar]
  8. ZHOU H Y, WANG X G, BAI Y L, et al. Ascent phase trajectory optimization for vehicle with multi-combined cycle engine based on improved particle swarm optimization[J]. Acta Astronautica, 2017, 140: 156–165 [Article] [CrossRef] [Google Scholar]
  9. YANG S B, CUI T, HAO X Y, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67: 88–95 [Article] [CrossRef] [Google Scholar]
  10. LU Ping, LIU Xinfu. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 750–765 [Article] [CrossRef] [Google Scholar]
  11. LIU Xinfu, LU Ping, PAN Binfeng. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1): 23–40 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  12. SZMUK M, ACIKMESE B, Berning A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints[C]//Proceedings of AIAA Guidance, Navigation, & Control Conference, 2016 [Google Scholar]
  13. LIU Xinfu. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 65–76 [Article] [CrossRef] [Google Scholar]
  14. WANG Jiawei, ZHANG Ran, HAO Zeming, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 121–130 (in Chinese) [Google Scholar]
  15. YANG Ben, LI Tianren, MA Xiaoyuan. Fast multi-constraints trajectory optimization based on sequence convex optimization[J]. Aerospace Control, 2020, 38(3): 25–30 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.