Open Access
Issue
JNWPU
Volume 41, Number 6, Decembre 2023
Page(s) 1170 - 1178
DOI https://doi.org/10.1051/jnwpu/20234161170
Published online 26 February 2024
  1. CHEN S, WANG H, XU F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Trans on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  2. SHARIFZADEH F, AKBARIZADEH G, SEIFI K Y. Ship classification in SAR images using a new hybrid CNN-MLP classifier[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(4): 551–562. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. VINT D, ANDERSON M, YANG Y, et al. Automatic target recognition for low resolution foliage penetrating SAR images using CNNs and GANs[J]. Remote Sensing, 2021, 13(4): 596. [Article] [CrossRef] [Google Scholar]
  4. GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//International Conference on Learning Representations, 2015 [Google Scholar]
  5. MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]//Computer Vision and Pattern Recognition, 2016: 2574–2582 [Google Scholar]
  6. CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//2017 IEEE Symposium on Security and Privacy, 2017: 39–57 [Google Scholar]
  7. PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]//European Symposium on Security and Privacy, 2016: 372–387 [Google Scholar]
  8. SU J, VARGAS D V, SAKURAI K. One pixel attack for fooling deep neural networks[J]. IEEE Trans on Evolutionary Computation, 2019, 23(5): 828–841. [Article] [CrossRef] [Google Scholar]
  9. MODAS A, MOOSAVI-DEZFOOLI S M, FROSSARD P. SparseFool: a few pixels make a big difference[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 9079–9088 [Google Scholar]
  10. SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]//International Conference on Learning Representations, 2014 [Google Scholar]
  11. STORN R, PRICE K. Differential Evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. [Article] [CrossRef] [Google Scholar]
  12. HUANG T, ZHANG Q, LIU J, et al. Adversarial attacks on deep-learning-based SAR image target recognition[J]. Journal of Network and Computer Applications, 2020, 162: 102632. [Article] [CrossRef] [Google Scholar]
  13. DU C, HUO C, ZHANG L, et al. Fast C & W: a fast adversarial attack algorithm to fool SAR target recognition with deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010005 [Google Scholar]
  14. PENG B, PENG B, ZHOU J, et al. Speckle-variant attack: toward transferable adversarial attack to SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4509805 [Google Scholar]
  15. ZHOU Juanfan, SUN Hao, LEI Lin, et al. Sparse adversarial attack of SAR image[J]. Journal of Signal Processing, 2021, 37(9): 1633–1643 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.